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ABSTRACT 
 
The now widely available and highly popular among non-expert users, particularly in the context of UAV photogrammetry, Structure-
from-Motion (SfM) pipelines have also further renewed the interest in the issue of automatic camera calibration. The well-documented 
requirements for robust self-calibration cannot be always met, e.g. due to restrictions in time and cost, absence of ground control and 
image tilt,  terrain morphology, unsuitable flight configuration etc.; hence, camera pre-calibration is frequently recommended. In this 
context, users often resort to flexible, user-friendly tools for camera calibration based on 2D coded patterns (primarily ordinary chess-
boards). Yet, the physical size of such patterns poses obvious limitations. This paper discusses the alternative of extending the size of 
the calibration object by using multiple unordered coplanar chessboards, which might accommodate much larger imaging distances. 
This is done initially  by a detailed simulation to show that – in terms of geometry – this could be a viable alternative to single patterns. 
A first algorithmic implementation is then laid out, and results from real multi-pattern configurations, both ordered and unordered, are 
successfully compared. However, aspects of the proposed approach need to be further studied for its reliable practical employment. 
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1. INTRODUCTION 

Since their automated pipelines may today generate high-quality 
spatial data at a reasonable cost, now widely available tools for 
‘SfM photogrammetry’, particularly UAV-based, have triggered 
an explosion of its applications (notably in the geosciences), by 
attracting unprecedented numbers of users, both expert and non-
expert. This is inevitably accompanied by intensive research for 
reliably assessing the potential of such approaches, their limita-
tions and the conditions for successful practices. In this context, 
the theoretical and practical interest in aspects of camera cali-
bration (a crucial factor for accurate 3D reconstructions) is also 
renewed. Particularly so, as many users apparently tend to see in 
automatic camera self-calibration a guarantee for acceptable re-
liability and accuracy (Fraser, 2013); yet, reliance upon “black 
box” calibration routines is problematic since weak image block 
configurations will lead to imprecise and inaccurate camera pa-
rameters (Micheletti et al., 2015). Conditions for reliable self-
calibration, to avoid errors reflected as deformations in the end-
results, have been well founded (James & Robson, 2014; Luh-
mann et al., 2016). These generally include the need for adding 
oblique imagery (significant image tilt),  sufficient scale variation 
within the images, multi-scale nadir images, an adequate num-
ber, distribution and accuracy of ground control points (GCPs), 
cross flight patterns (i.e. rolled images) and strong geometric fea-
tures in the scene. Yet ordinary users cannot be expected to com-
ply to similar geometric preconditions for in situ self-calibration; 
besides, similar image configurations are not feasible in several 
UAV operational situations (Eltner & Schneider, 2015). Thus, a 
‘common’ mapping flight, mostly consisting of similar-scale na-
dir images, does not represent optimal network schemes for ca-
mera parameter estimation (James et al., 2017). The problem is 
further aggravated with flat terrain, corridor configurations and 
sparse or unevenly distributed ground control (Hastedt & Luh-
mann, 2015; Griffiths & Burningham, 2018). In such cases, the 

obvious response is camera pre-calibration (Gerke & Przybilla, 
2016; Hastedt et al., 2016; Cramer et al., 2017). Furthermore, the 
requirement itself for GCPs is regarded as a serious barrier – in 
terms of time or cost – to a “further uptake” of UAV-based pho-
togrammetry (Carbonneau & Dietrich, 2016). In the absence of 

GCPs, pre-calibration is advised. This may also include instances 
of directly georeferenced photogrammetric UAV platforms (Re-
hak & Skaloud, 2015; Gabrlik et al., 2018) as well as simpler ap-
plications of limited accuracy requirements (Kaiser et al., 2014) 
and inaccessible areas or emergency and high-risk situations (Da-
ramola et al., 2017). 
  
Camera pre-calibration may be carried out by independent self-
calibration, albeit subject to the above-mentioned requirements 
concerning camera network design, while uses of large outdoors 
3D test-fields have also been made. In contrast to such more de-
manding approaches, plane-based approaches offer an attractive 
alternative; in Adam et al. (2013), for instance, the authors have 
reported on camera calibration based on unstructured 2D surfaces 
(wall graffiti). Of primary importance are of course several free-
ly available and fully  automatic tools relying on 2D patterns (and 
chessboards in particular) – exemplified by Bouguet’s Camera 
Calibration Toolbox for Matlab, also included in OpenCV, and 
Agisoft Lens. These offer a very attractive alternative, having thus 
become quite popular, notably among non-expert users. The pre-
sent authors have also developed such a free calibration tool, re-
ported in Douskos et al. (2009). Chessboard patterns are easy and 
cheap to construct (mostly by a common printer), while distinct 
image corners can be robustly extracted with sub-pixel accuracy. 
The high demand for such flexible automatic 2D calibration tools 
– also used for thermal and underwater cameras (e.g. Javadnejad 
et al., 2019; Shortis, 2019) – is directly reflected in a steadily on-
going research which addresses issues such as computational ef-
ficiency, poor lighting/contrast, non-homogeneous illumination, 
overexposure, image blur, low image resolution, image noise, si-
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gnificant image distortion, missing corner points or partial occlu-
sion of patterns, extreme imaging poses, board printing inaccu-
racy or deviations from planarity (recent works include Duda &  
Frese, 2018; Yamaguchi et al., 2018; Yan et al., 2018; Yang et 
al., 2018; Hannemose et al., 2019; Meng et al., 2019; Wholfeil 
et al., 2019; Zhu et al., 2019). Deep learning tools have also been 
recently used for robust detection of checkboard corners (Donné 
et al., 2016; Raza et al., 2019). 
 
Indeed, a significant number of applications of SfM/UAV photo-
grammetry with pre-calibrated cameras have relied on available 
chessboard-based calibration software (recent examples include 
Cucchiaro et al., 2018; Erenoğlu & Erenoğlu, 2018; Halik & 
Smaczýnski, 2018; Menge & Lohsträter, 2018; Probst et al., 
2018; Ventura et al., 2018; Wierzbicki, 2018; Burnett et al., 
2019; Javadnejad et al., 2019; Kölling et al., 2019; Luppichini 
et al., 2019; Mahmood et al., 2019; Musci et al., 2019; Wang et 
al., 2019; Yurtseven, 2019), often without particular considera-
tions, e.g. concerning focusing distance and frame coverage. Al-
though regarded as inherently inferior to camera calibration ba-
sed on 3D point arrays, 2D patterns may be expected to yield ac-
ceptable, or even comparable, accuracy for several applications 
by adopting powerful image block configurations (Fraser, 2013; 
Samper et al., 2013; Hastedt &  Luhmann, 2015; Xiang et al., 
2018). Rojtberg & Kuijper (2019) have discussed the selection 
of sparse views of planar patterns for optimal camera calibration 
concerning both pinhole camera and lens distortion parameters.  
 
Thus, pre-calibration with a typical chessboard-based routine and 
camera settings identical to those of the flight has been reported 
to outperform self-calibrations with single-scale nadir imagery, 
the favored choice in environmental mapping (Griffiths & Burn-
ingham, 2018); on the other hand, low accuracy in elevations was 
obtained whenever different focus settings were used for pre-ca-
libration to ensure good frame coverage and focus (Harwin et al., 
2015; Han et al., 2016; Gabrlik et al., 2018). This points to an ob-
vious severe limitation of chessboard-based tools, namely the 
size of the 2D calibration object, either printed or on screen: re-
ported sizes of such patterns do not seem to exceed 1x1 m2 (Bou-
ros et al., 2015). This physical limitation does not allow larger 
imaging distances or focusing at infinity, since this would inevi-
tably produce poor frame coverage or blurred images. As a con-
sequence, the use of a single chessboard is questionable in UAV 
or other outdoor applications; in this context, a new environment 
for camera calibration, also suitable for UAVs, is needed (Han et 
al., 2016; Tan et al., 2017; Lim et al., 2019). 
 

Thus motivated, this paper is a preliminary study as to whether, 
and under which conditions, an extended approach based on a set 
of unordered coplanar chessboards might, in principle, simulate 
an (infeasibly large) single chessboard, to effectively accommo-
date longer focusing distances or wider fields of view. Multiple 
(non-coplanar) or 3D chessboards have already been exploited for 
camera-to-camera, camera-to-range sensor or multiple depth ca-
mera automatic calibration (Geiger et al., 2012; Fuersattel et al., 
2017; Yin et al., 2018; Fu et al., 2019; Liu et al. 2019). Yet, to 
the best of our knowledge, the particular use of multiple coplanar 
chessboards for camera calibration has not been investigated. 
 

Initially, the geometry of calibration adjustments with multiple 
coplanar chessboards was compared here, via simulated data, to 
that of an equivalent single-chessboard calibration. The task was 
to study, in an essentially geometric sense, the behavior in these 
two cases of the standard errors of the interior orientation para-
meter (IOP) values and their correlations, chiefly with the exte-
rior orientation parameter (EOP) values. Next, the mathematical 
model as implemented here will  be presented, and examples with 
real mages will be given and discussed. 

2. GEOMETRIC INVESTIGATION BY SIMULATION 

2.1 Simulated image data 

Five identical 6×7 chessboards were assumed, with no in-plane 
rotations, on a planar area; four were placed symmetrically at its 
corners and one at its centre. This was repeated for 4 chessboard 
sizes M1–M4, with the dimensions of each individual board be-
ing 3.8%, 7.5%, 15%, 22.5%, respectively, of those of the total 
area. These patterns were “recorded”, while a single chessboard 
(S), covering the same area outline with equal number of points 
(208 against 210), was too projected with identical IOPs and EOPs 
to provide corresponding image sets. (As an example, this con-
figuration is roughly equivalent to an 8×6.5 m2 total planar area 
and individual pattern sizes of 0.25×0.3, 0.5×0.6, 1.0×1.2 and 
1.5×1.8 m2, of which M2 and M3 are, of course, more realistic.) 
 
Four 8-image sets were generated for each of the four pattern 
classes. The sets differed in the tilt of their camera axes (and in 
the respective position of the projective centres to retain similar 
mean image scales), i.e. in perspective deformations. The same 
two images of each set had roll angles of 90º and –90º, respecti-
vely. The four different image tilt  classes (tilt  1 – tilt  4) of Table 1 
were implemented. Imaging configurations pertaining to diffe-
rent tilt classes and typical images are seen in Fig. 1 and Fig. 2. 
Although rather sub-optimal, these configurations can serve the 
purposes of comparison between single and multiple patterns. 
 

Table 1. Classes of image tilt (º) 
 tilt 1 tilt 2 tilt 3  tilt 4 

mean 10.0 18.0 24.5 36.0 
range 1.5 - 17.0 2.5 - 30.0 4.5 - 40.0 8.5 - 53.5 

 

  
Figure 1. Camera tilts. Left: smallest tilt 1; right: largest tilt 4. 

 

  

  
Figure 2. Above: corresponding images of small image tilt 

(pattern classes M3 and M4). Below: corresponding images of 
large image tilt (pattern classes M2 and S). 

 
2.2 Geometric precision of parameter values 

Thus, a total of 20 self-calibrating bundle adjustments (each in-
volving 8 images) emerged, as the combination of 4 image tilt  
classes with 4 pattern sizes plus the single-board case. Self-cali-
brating bundle adjustment included the basic 5-parameter set of 
IOPs: camera constant c; principal point location xo, yo; coeffici-
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ents k1, k2 of radial lens distortion. As outlined in Section 3.1, 
solutions with multiple patterns of course involve additional un-
known parameters, i.e. the three in-plane 2D rigid transformation 
parameters for each but one (namely, that defining the reference 
system) of the patterns. 
 
The aim here is to study the geometry (error cofactors, correla-
tions of parameter values) of single and multiple pattern calibra-
tions. The covariance matrix C = Q×σo

2 of parameter values pro-
duced by an adjustment (σo being its standard error) represents 
the error propagation of random errors via the cofactor matrix Q 
(inverse matrix of normal equations); the square root of the cor-
responding diagonal element is the standard error of a parameter 
value. Thus – regardless of noise – the square root of the corres-
ponding diagonal element of Q (cofactor qi) directly reflects, as 
a propagation factor, the effect of adjustment geometry on the 
precision of the value of parameter i, which is of interest here. 
 
2.2.1 Error cofactors of parameters: In Fig. 3 (above) the va-
riations of cofactor values of IOPs c, xo, yo (camera constant and 
principal point location) with image tilt in the cases of a single 
(S) and variably sized coplanar boards (M) are presented. For (xo, 

yo) the RMS value of the two cofactors is given. Corresponding 
q-variations for coefficients k1, k2 of the radial-symmetric lens 
distortion polynomial are also seen in Fig. 3 (below). 
 

  

  
Figure 3. Cofactor q values of IOP parameters according to tilt 
and pattern class. Above: camera constant c and principal point 

location (xo, yo) [q(xo,yo) are RMS values of q(xo) and q(yo)]. 
Below: coefficients k1, k2 of radial-symmetric lens distortion.  

 
Image tilt  expectedly strengthens the geometric precision of both 
c and xo, yo. Compared to a single ‘equivalent’ one, multiple pat-
terns appear to slightly improve the precision of c for smaller 
image tilts; q-values converge with increasing image tilt.  Regard-
ing xo, yo, geometric precision is somewhat higher in the single-
pattern case. For parameters k1, k2, larger pattern sizes appear as 
being equivalent, or slightly superior, to the single board; under-
standably, smaller patterns result in smaller image coverage and 
thus do not favour precision. 
 

The results were validated using the single and multiple patterns 
(of size M2) with added Gaussian noise of different σ-levels. For 
each of them, 100 calibrations were performed; the RMS devia-
tions of all IOP values for σ =1 from the correct ones were very 
close to the corresponding cofactor values of Fig. 3. Hence, one 
could provisionally claim that – from a geometric point of view at 
least – a (technically feasible) use of coplanar multiple patterns 
instead of (impracticably large) single patterns might represent a 
valid alternative for camera calibration for larger imaging dis-

tances and, under circumstances, even provide somewhat higher 
precision. Intuitively, one could partly attribute this to the fact 
that well-distributed multiple patterns may, generally, give pro-
jective rays forming larger angles with the camera axes. 
 
2.2.2 Correlations of parameter values: Yet, even more than 
standard errors (here: cofactors) of the IOP values themselves, it 
is their correlations with other estimated parameter values which 
will provide a better insight into the underlying geometry of the 
single and the multi-pattern scenarios. Flat chessboard-type pat-
terns may introduce excessively high correlations between IOP 
and EOP values (Luhmann et al., 2016). Indeed, as estimated IOP 

values are here intended for autonomous (scene-independent) use 
as pre-calibrated data, their correlation with EOP values are of pi-
votal importance: weaker coupling among these parameters im-
plies a more reliable estimation of the camera matrix. In what 
follows, the most significant correlations are presented (except 
for cases where it was indispensable, the sign of the correlation 
coefficient ρ has been omitted to facilitate comparison). First, the 
correlations between c and the linear EOPs (i.e. image projection 
centre coordinates Xo, Yo, Zo) are shown in Fig. 4. 
 

  
Figure 4. Correlation coefficients (ρ) of camera constant c with 
EOPs Zo and Xo, Yo. The mean absolute values of ρ(c, Xo) and 

ρ(c, Yo) are jointly presented as ρ(c, Xo/Yo). 
 

The c-value estimates emerge here as significantly less coupled 
in the multi-pattern version, notably as regards their crucial rela-
tion with the depth parameter Zo, but also with Xo, Yo. This de-
coupling strongly increases with tilt  and decreases with pattern 
size. Both too large image tilts and too small patterns might, of 
course, be unfavourable in terms of feature extraction; hence, in 
practical cases suitable choices of tilt and pattern size should be 
made. For ‘reasonable’ combinations (e.g. here pattern sizes M2, 
M3 with tilts tilt 3, tilt 4) the decrease of correlations is still evi-
dent. Correlations of c with the two out-of-plane image rotation 
angles ω, φ are also weakened in all cases, yet only slightly. A 
similar trend is observed concerning correlations of the principal 
point (xo, yo) and EOPs, as illustrated in Fig. 5 regarding Xo, Yo 
and image roll angle . 
 

  
Figure 5. Left, mean absolute values of ρ(xo, Xo) and ρ(yo, Yo); 

right, mean absolute values of ρ(xo, ) and ρ(yo, ). 
 
Exception are the correlations of xo, yo with rotation angles  and 
 (Fig. 6, left) which are clearly stronger in multi-pattern cases, 
particularly for the smaller tilts. The coupling of xo, yo with the 
out-of-plane image angles, however, might be further dampened 
if more images with large roll-angles are introduced. Finally, of 
interest are the correlations of the radial distortion parameters k1, 
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k2 with Zo (Fig. 6, right). They appear to be larger in the multi-
pattern cases but remain relatively weak. 
 

  
Figure 6. Left, mean absolute values of ρ(xo, φ) and ρ(yo, ω); 

right, mean values of [ρ(k2, Zo)–ρ(k1, Zo)]. 
 
It could be claimed that – in terms of geometry – substitution of a 
single by multiple coplanar chessboards appears to offer a valid 
option, capable of yielding equivalent, if not superior, results re-
garding reliable estimation of the camera matrix. This is mainly 
indicated by generally looser correlations among IOPs and EOPs; 
correlation coefficients of IOP/EOP parameter pairs [xo, φ], [yo, 
ω], [k1, Zo], [k2, Zo] also seem to converge for larger tilts. An ex-
planation for this phenomenon can be found in Fig. 7 which pre-
sents the mean absolute correlations of all three 2D chessboard 
transformation parameters (in-plane rotation angle ϑ and transla-
tions tX, tY) with all IOP and EOP values. 
 

  
Figure 7. Means of absolute ρ-values of the in-plane pattern 

transformation parameter values with the camera IOPs (left) and 
EOPs (right). [It is noted that ρ(ϑ, Zo)~0 has been ignored.] 

 
It is seen that the additional in-plane parameters of multi-pattern 
cases do not actually affect IOP values but are evidently coupled 
with EOP estimates. This fact appears to ‘reshuffle’ correlations, 
by generally tightening them within the EOP parameter set (see 
examples in Fig. 8, above) and at the same time, as already noted, 
somewhat relaxing their correlation with IOPs. On the other hand, 
use of multiple patterns seems to strengthen certain correlations 
within the IOP set, such as those of radial distortion parameters 
with the camera constant and those between the principal point 
coordinates (Fig. 8, below). Yet, as the IOP set is intended to be 
further applied as a ‘compact’ parameter group, this represents no 

grave problem. The same holds true for the k1, k2 estimates them-
selves – although they were, as generally expected, very strongly 
intertwined with each other in all cases [ρ(k1, k2) ≤ –0.89] – as it 
has been asserted that their presence is, nevertheless, significant 
for modelling radial distortion (Wackrow et al., 2007). 

 
2.2.3 Multiple chessboards on parallel planes: It is interesting 
to also check the effect of patterns not simply coplanar but eleva-
ted, i.e. on parallel planes. This adds a new unknown tZ for each 
elevated pattern. Of the 5 coplanar chessboards of one size, the 
same two were differently elevated, in several calibration adjust-
ments, by 5%–30% of the mean imaging distance. All IOP and 
EOP values remained the same as before. Results were assessed 
against those from multiple coplanar patterns. Pattern elevations 
improved geometric precision q(c) of the camera constant only 
for very small (not recommended) camera tilts, i.e. they simply 

seem to counterbalance the lack of significant tilt,  which repre-
sents the crucial factor. The improvement of xo and yo estimates 
is stronger (but ceases to exist for the large image tilt4); this is 
apparently due to correlations of xo and yo with EOPs being gene-
rally weakened by elevations. On the contrary, the distortion pa-
rameter estimates k1 and k2 from elevated patterns are generally 
of lower precision. Apparently, this is related to the emergence 
of significant correlations (ρ = 0.45–0.65) between k1, k2 and the 
estimated elevation values tZ of the two patterns. Overall, these 
observations allow a provisional conclusion that, in principle, no 

notable benefits seem to be expected if  replacing some coplanar 
patterns with elevated ones. 
 

  

  
Figure 8. Correlation coefficients (ρ) between EOPs. Above: 
mean absolute values of ρ(, Xo) and ρ(, Yo); overall mean 

absolute values of ρ-values between (ω, φ) and (Xo, Yo). Below: 
mean values of [ρ(k2, Zo) and –ρ(k1, Zo)]; mean ρ(xo, yo) values. 
 
2.2.4 Number of chessboards: More coplanar patterns means, 
of course, more points but, generally, also better distribution over 
the image format. The estimability of the distortion parameters, 

in particular, is indeed expected to benefit from the presence of 
image point observations in a richer variety of radial distances. 
Two calibration adjustments with size pattern M3 were thus per-
formed; in the second configuration four additional coplanar pat-
terns had been added within the area described by the 5 original 
patterns of the first. Results are seen in Fig. 9. 
 

 
Figure 9. The effect of using 9 coplanar chessboards versus 5, 

presented as the proportional improvement of cofactor values q. 
 
These results indicate that the geometry-induced improvement of 
the cofactor q-values is in fact the same for parameters c and xo, 
yo, and might be attributed to the higher number of participating 
points. The markedly stronger improvement for parameters k1, k2, 
however, could be regarded also as a result of the more thorough 
image coverage (of the same image area) as illustrated in Fig. 10. 
In general, furthermore, more chessboards will  allow coverage of 
areas close to the image corners, which is of course also crucial 
for reliable estimation of lens distortion. 
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Figure 10. Overall point distribution over the whole image 
format (of 8 images) in the cases of 5 and 9 chessboards. 

 

 
3. CALIBRATION ALGORITHM AND APPLICATION 

3.1 Implemented algorithm 

Our first implementation of the calibration algorithm is presented 
here, with the assumption that all corners of all chessboards have 
been extracted. Its efficiency mainly rests on the automatic iden-
tification of multiple chessboards on all available images, a pro-
cess with two distinct phases: a) chessboard corner detection; b) 
establishment of chessboard correspondences among images. 
 
First, in order to localize the corners of multiple chessboards ap-
pearing on several images, an algorithmic scheme based on the 

detectCheckerboardPoints Matlab function (which, in fact, is an 
implementation of the chessboard detector of Geiger et al., 2012) 
has been followed. Initially, a group of filter kernels selected to 
reveal chessboard corner patterns is convolved with the grayscale 
image, and thus candidate areas are extracted from the generated 
corner likelihood map (fusion of convolved images) by employ-
ing morphological filters (image opening and closing). The chess-
board detector is then applied successively on all located image 
areas to allow determination of all chessboard corner coordinates 
with subpixel accuracy. Patterns extracted with sizes incompati-
ble with that given by the user are ignored in the solution. 
 
In a second stage, chessboard correspondences among images are 
recovered in the world plane, a consideration which drastically 
simplifies the complexity of this task by reducing the degrees of 
freedom of inter-image relation to those of a 2D rigid transforma-
tion. In this manner, the chessboard structure (the world plane co-
ordinate system) is initially established by rectifying the patterns 
of the first image onto the world plane, based on the homogra-
phy coefficients computed from an arbitrarily chosen image pat-
tern (here, that closer to the gravity centre of all extracted chess-
board corners is used as the base pattern). Similarly, all chess-
boards of all other images are projected recursively into the same 
world system. However, due to the presence of different base pat-
terns selected in every rectification, patterns projected onto the 
plane from an image do not, as a rule, coincide with those from 

another image; in fact they differ by a 3-parameter rigid transfor-
mation (tX, tY for translation, ϑ for rotation), taking into account 

that the non-symmetric m×n chessboard structure can be exploit-
ed. Estimation of the 3-parameter sets can, subsequently, restore 
pattern correspondences among images. 
 
Although the unknown 2D rigid transformations might be found 
by an exhaustive search, application of a PCA (Principal Compo-
nents Analysis) approach has been shown to be more efficient. 
Accordingly, all pattern points are first translated to their overall 
gravity centre and then rotated to render the axis with the higher 
variance horizontal. Translation of pattern points into a common 
coordinate system allows recovery of all pattern correspondences 
by matching points with the smallest Euclidean distance. Initial 
values for a calibration adjustment are estimated linearly by first 
computing the IAC (Image of the Absolute Conic), and particu-
larly by exploiting the constraints imposed on it by homographies 

H between images and the world plane (see Zhang, 2000). Ca-
mera exterior orientations are estimated via the decomposition of 
H, since the camera interior orientation has been recovered. 
 
Having thus established adequately accurate estimates for all pa-
rameters involved, the developed calibration algorithm performs 
the simultaneous refinement of the camera interior and exterior 
orientation elements for all available views, along with the exact 
recovery of the 2D translations and rotations of all other chess-
board patterns with respect to the fixed reference pattern. This is 
carried out by minimizing image chessboard corner residuals in 
a least-squares bundle adjustment. 
 
3.2 Application and evaluation 

The configuration used here consisted of 6 coplanar 5×6 boards 
(1.5 cm spacing) and was recorded by two cameras: a 16 MP Sony 
5N and an 18 MP Canon 550D, both with fixed camera constants 
c ≈ 20 mm. The first dataset included 14 images, 3 of which had 
roll angles of 90º or –90º and one 180º; the second consisted of 
16 images, 4 of which were taken with roll angles of 90º or –90º. 
Fig. 11 presents examples of both image sets. Established pattern 
correspondences among images are seen in Fig. 12. 
 

 
Figure 11. Images of the datasets (above: Sony; below: Canon). 
 

 
Figure 12. Details of Sony images showing all pattern 

correspondences established across images. 
 

For the purposes of comparison, two calibration procedures were 
performed. Besides the approach described above, in the second 
solution the known planar coordinates of all chessboard corners 
participated as fixed GCPs. Thus, the studied approach of using 
unordered patterns could be evaluated against results from an ad-
justment in which all patterns were considered as fully ordered. 
The results of both adjustments for the two cameras are found in 
Tables 2 and 3. 
 
The results of the two approaches appear to be quite similar. The 
values for the camera constant differ in the two cases from their 
means by 0.10‰ and 0.23‰, respectively. It is also pointed out 
that the c-values are noticeably correlated with the distortion pa-
rameters k1, k2 (see Table 4); the distortion curves, however, are 
very close, as shown in Fig. 13. 
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Table 2. Calibration results for Sony camera (14 images) 
O: ordered patterns; U: unordered patterns 

 O U 
σo (pixel) 0.45  0.38 
c (pixel) 
xo (pixel) 
yo (pixel) 

k110–9 (pixel–2) 
k210–16 (pixel–4) 

4194.3 ± 0.60 
1.0 ± 0.50 

22.8 ± 0.50 
7.67 ± 0.07 
2.87 ± 0.23  

4195.2 ± 0.50 
4.8 ± 0.60 
16.6 ± 0.60 
8.27 ± 0.07 
4.30 ± 0.20 

 
Table 3. Calibration results for Canon camera (16 images) 

O: ordered patterns; U: unordered patterns 

Canon (16 images) O U 
σo (pixel) 0.40  0.37 
c (pixel) 
xo (pixel) 
yo (pixel) 

k110–9 (pixel–2) 
k210–16 (pixel–4) 

4935.9 ± 0.60 
9.8 ± 0.50 

19.7 ± 0.50 
1.29 ± 0.06 
3.07 ± 0.18  

4938.2 ± 0.60 
.5 ± 0.70 

21.9 ± 0.70 
1.25 ± 0.06 
2.82 ± 0.17 

 
Table 4. Correlation coefficients ρ between c and k1, k2 

O: ordered patterns; U: unordered patterns 

 Sony Canon 
 O U O U 

ρ(c,k1)    0.44    0.41    0.27    0.26 
ρ(c,k2) 0.45 0.38 0.25 0.23 
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Figure 13. Calibrated radial distortion curves of the two cameras 

using both ordered and unordered patterns. 
 
The principal point coordinates (xo, yo) – generally the most sen-
sitive camera parameters – present variations of a few pixels. This 
is mainly a reflection of the geometry of the adjustment: the co-
factor values of xo, yo are relatively large (namely, comparable to 
those of c) and, in fact, slightly higher in the case of unordered 
patterns. This should be considered in relation to correlations of 
(xo, yo) with the image rotation angles which are significant. For 
unordered patterns, correlations of (xo, yo) with the two out-of-
plane rotation angles (ω, φ) are slightly stronger, but noticeably 
weaker with image roll angle . Similarly, correlations of c with 
coordinates (Xo, Yo, Zo) of the projection centre are considerably 
weaker, on average by 10%, in the case of unordered patterns. 
 
It may be concluded that unordered coplanar patterns appear to 
be, in principle, competitive with equivalent fully  structured 2D 

configurations. The real positions of the patterns appear to be ro-
bustly reconstructible: the mean deviation of estimated in-plane 
chessboard rotation angles from their true values was 0.025º, 
while the mean deviation of estimated pattern shifts tX, tY from 

their true values were, as percentage of the respective X and Y 
dimensions of the whole chessboard set, 0.15‰. 

4. CONCLUDING REMARKS 

The current popularity of widely available SfM photogrammetry 
tools among users in a large variety of application fields has re-
newed the interest in the issue of automatic camera calibration. 
As discussed in the introduction, the need for pre-calibrated ca-
mera geometry is not at all unusual in practical situations and is 
quite often tackled by resorting to the easy-to-handle automatic 
calibration toolboxes based on coded 2D patterns, notably of the 
chessboard type. Their physical limitation in size, however, has 
been often noted, along with their ensuing unsuitability for larger 
focusing distances and camera fields of view. This consideration 

has motivated our investigation as to whether a conventional fully 
structured 2D pattern might be comparably replaced by a “semi-
structured” configuration, such as multiple identical chessboards 
in unknown coplanar distributions, for the purposes of fully au-
tomatic camera calibration. Such an alternative would accommo-
date practicable calibration patterns of much larger size. 
 
A detailed simulation has indicated that, in geometric terms, this 
seems to be, in principle at least, possible. Under the reasonable 
assumption that all chessboard corners have been extracted, an 
algorithm has been implemented, applied and evaluated. Our re-
sults proved to be comparable to those obtained when using the 
chessboard configuration as fully known. Obviously, further re-
search is needed for investigating issues like chessboard number 
and distribution, inclusion of additional interior parameters (e.g. 
skewness and tangential lens distortion), pattern printing inaccu-
racies and, of course, for validating this approach under practical 
situations involving large outdoor planar test-fields.  
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