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Abstract 

Camera calibration is a fundamental task in photogrammetry and computer vision. This paper 
presents an approach for the automatic estimation of interior orientation from images with three 
vanishing points of orthogonal directions. Extraction of image line segments and their clustering 
into groups corresponding to three dominant vanishing points are performed without any human 
interaction. Camera parameters (camera constant, location of principal point, two coefficients of 
radial lens distortion) and the vanishing points are estimated in a one-step adjustment of all 
participating image points. The approach may function in a single-image mode, but is also 
capable of handling input from independent images (i.e. images not necessarily of the same 
object) with three and/or two vanishing points in a common solution. The reported experimental 
tests indicate that, within certain limits, results from single images compare satisfactorily with 
those from multi-image bundle adjustment. 
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1. Introduction 
Extraction and exploitation of the information, about both camera and object geometry, which 
is inscribed into the vanishing points of a perspective image is a significant topic of research, 
particularly within the context of automation. The use of vanishing points refers essentially to 
three fundamental – though not necessarily independent – tasks, those of camera calibration, 
image orientation and object reconstruction. In most cases uncalibrated images of man-made 
structures are involved, which usually lack conventional control information. Camera 
calibration is the particular topic of this contribution. 

In certain instances the calibration step may be by-passed since, under circumstances, even 
one suitable vanishing point on an uncalibrated image might suffice for affine planar 
reconstruction and thus allow 1D measurement (Grammatikopoulos et al., 2002). For camera 
calibration, however, it is known that the primary elements of interior orientation (camera 
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constant and principal point location) may be estimated – along with the camera rotation 
matrix – from vanishing points of three orthogonal directions on a single image. Merritt 
(1958) and Gracie (1968) have provided equations for estimating interior orientation 
parameters and camera attitude from configurations with such vanishing points (image 
principal point is the orthocentre of the triangle formed by the vanishing points). Methods 
explicitly or implicitly using, in different conceptual frameworks, three image vanishing 
points of orthogonal directions for the purposes of camera calibration have been subsequently 
reported in both photogrammetry and computer vision (Bräuer-Burchardt and Voss, 2001; 
Caprile and Torre, 1990; Cipolla et al., 1999; Liebowitz et al., 1999; Sturm and Maybank, 
1999; van den Heuvel, 1999). 

Yet, the demand that an image displays three vanishing points which are suitable for reliable 
camera calibration (for instance, none is close to infinity) is admittedly not trivial. In contrast, 
images (e.g. of 2D objects) with pairs of finite vanishing points are much more common. Two 
vanishing points of orthogonal space directions may permit, assuming fixed principal point, to 
recover image rotations and camera constant (Karras et al., 1993) or directly perform planar 
rectification. If the principal point is not known, metric rectification requires additional 
information, e.g. a length ratio in different directions (Liebowitz et al., 1999), yet the principal 
point remains unknown. 

However, although one single image with two vanishing points lacks the information for full 
camera calibration, the authors have shown that combinations of several independent (single) 
images with vanishing points in two orthogonal directions supply adequate information for 
estimating camera geometry, including aspect ratio (Grammatikopoulos et al., 2004). By 
‘independent’ or ‘single’ images it is meant that the contents of images need not be the same 
as in other cases of calibration, i.e. no stereo views or block of images of the same object are 
required for camera calibration based on vanishing points. Using the relation of these two 
vanishing points to the camera parameters, the approach in the above publication rests on a 
direct geometric interpretation regarding the locus of the projection centre in the image 
system. These loci are hemispheres, with centres belonging to the image plane and diameters 
fixed by the two orthogonal vanishing points. This non-linear equation involves explicitly the 
camera interior orientation parameters along with the coordinates of the vanishing points. 

Against this background, this paper presents an approach for the automatic calibration of 
single images with three vanishing points of orthogonal directions (which, at the same time, 
can perform a common calibration of several independent images with three and/or two 
vanishing points). Exploiting a priori information about object geometry – line parallelism 
and perpendicularity constraints – and assuming square pixels, the three primary parameters 
of interior orientation, namely camera constant and principal point location, are estimated 
along with two coefficients of radial symmetric lens distortion without any user interaction. 
Camera calibration is achieved iteratively through a simultaneous least-squares adjustment of 
all image points belonging to lines which intersect in the three dominant vanishing points of 
the scene, on the assumption that these correspond to orthogonal space directions. In this 
sense, the approach presented here relates particularly to those of Becker and Bove (1995), 
Bräuer-Burchardt and Voss (2001), and van den Heuvel (1999). 

2. One-step camera calibration approach 
Parameter computation in van den Heuvel (1999) is split into two steps. First, the parallelism 
constraint established among the normal vectors of the interpretation planes of parallel 3D 
lines allows estimation of vanishing points and coefficient k1 of radial distortion, with the 
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image centre chosen as the centre of symmetry. In a subsequent step, the perpendicularity 
constraint is exploited, using observations adjusted from the previous step, for the estimation 
of camera parameters. The nominal camera parameters should be known, else user interaction 
is necessary. Bräuer-Burchardt and Voss (2001) first estimate the symmetric radial distortion 
(coefficients k1, k2 and location of the point of best symmetry of distortion) along with the 
vanishing points via an iterative process. Interior orientation parameters are then computed 
from the corrected vanishing points. In both approaches, detection of vanishing points and 
classification of line segments in orthogonal directions run automatically. On the other hand, 
Becker and Bove (1995) estimate radial and decentering image distortions by minimizing the 
dispersion of vanishing points on the Gaussian Sphere. The internal camera parameters are 
then recovered in a second independent step. 

Here, unlike the above approaches, vanishing points and interior orientation parameters 
(including radial distortion) are estimated simultaneously. Of course, detection of vanishing 
points along with the estimation of radial lens distortion is in fact an entirely autonomous 
task; it yields vanishing points estimated as the common points of concurring lines free from 
distortion. The latter refers to the point of best symmetry of distortion S which, strictly 
speaking, does not coincide with the image principal point P(xo, yo). The six image 
coordinates of the vanishing points of three orthogonal directions supply an equal number of 
equations which then yield, with no redundancy, the remaining group of unknown quantities, 
namely the three camera geometry parameters and the image rotation matrix. Generally, 
however, if not the highest possible accuracy is needed the principal point itself is mostly 
assumed as the zero-point of lens distortion (S ≡ P). In this case, the adjustment should be 
performed in a unified process, with xo, yo as common unknowns in the two groups of 
equations. In fact, given the accuracy expected when calibrating with vanishing points, it is 
questionable whether the point of best symmetry has here something substantial to offer – 
other than a distinction from the principal point to simply allow splitting the process in two 
steps. 

Furthermore, a simultaneous adjustment is preferable if more than the minimum of three 
vanishing points are available. This would be the case, for instance, if additional directions in 
space are known. But a redundancy in vanishing points also exists when two or more 
independent images (from the same camera) with three vanishing points are at hand, since in 
this case all triplets of vanishing points should be constrained to define triangles reflecting the 
same camera geometry. In such a case, a unified approach is evidently advantageous against 
two successive adjustment processes. This is also the case when independent images (of the 
same or altogether different scenes) with only two vanishing points are adjusted, as outlined 
in Grammatikopoulos et al. (2004). Clearly, combinations of images with three and two 
vanishing points are also possible. Finally, the unified approach presented here is also useful 
when images of the same scene have been taken from closely neighbouring standpoints, and 
hence no bundle adjustment is feasible. 

In principle, the location of the point of best symmetry S might also be included as unknown 
in the one-step algorithm. This is not the case here (radial distortion refers to the principal 
point xo, yo), while decentering lens distortion has also been neglected. Automation of the 
procedure means that a vanishing point detection phase is necessary before the adjustment, 
preceded by an edge extraction and linking process. 
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2.1. Vanishing Point Detection 

Different approaches have been reported as regards automatic detection of vanishing points. 
Barnard (1983) first introduced the use of the Gaussian Sphere as an accumulation space: 
every image line segment defines a corresponding major circle on the ‘unit sphere’, which is 
centred onto the optical centre; the intersection of two or more such circles defines their 
vanishing point. The search of such intersections is performed using Hough transform in the 
tessellated sphere and local maxima are detected as vanishing points. Main advantage of this 
bounded accumulation space is the representation of finite as well as infinite vanishing points. 
Yet, it has been pointed out that spherical sampling is here different in the x and y directions, 
generating non-uniform cells. Quan and Mohr (1989) extended this method using an 
accumulator generated by hierarchical division of the sphere, while Lutton et al. (1994) by-
passed the problem via a combination of regular and irregular quantization. In the last case, 
errors due to the finite extension of the image, its quantization and the ambiguity of detected 
segments have been compensated. Shufelt (1999) introduced the ‘interpretation plane swath 
model’ to handle the orientation error in image line segments and the interpretation planes 
they produce. Magee and Aggarwal (1984) compute all intersections among pairs of line 
segments on the Gaussian Sphere, without using the sphere as an accumulator space. On this 
basis, Gallagher (2002) proposed an algorithm using conditional probabilities established by a 
ground truth training set. A comparison of parameterization models of the Gaussian Sphere 
with respect to noise is found in Wenzel and Grigat (2006). 

Brillault and Mahony (1991) have presented a different accumulator space involving the 
uncertainty of lines to ensure a constant detection quality of vanishing points. The 
exploitation of the polar parameter space as accumulation space is also found in several 
publications (Straforini et al., 1993; Cantoni et al., 2001), while approaches for estimating 
vanishing points based on the ‘expectation maximization’ algorithm have also been reported 
(Antone and Teller, 2000; Kosecká and Zhang, 2002). Alternatively, vanishing points can be 
detected through texture analysis (Rasmussen, 2004). In the latter approach the perspective 
pose of textured planes is estimated by projecting spectral information onto the unit sphere. 

The procedure adopted here consists of two basic steps, that of edge extraction and linking, 
and that of vanishing point detection. 

2.1.1. Edge extraction and linking 

First, image edges are extracted with sub-pixel accuracy and connected to segments by means 
of polygonal approximation based on a suitable ‘straight-line threshold’ (Thormaehlen et al., 
2003), which limits the maximal accepted distance of edge points from the line segment. The 
line parameters are estimated through least-squares line-fitting. A threshold on segment length 
allows excluding very short segments from the process. As outlined in section 2.2.3, the 
threshold size decreases after the first estimation of the radial lens distortion coefficients. 

2.1.2. Vanishing point detection 

In this phase, line segments extracted from the previous step are classified into groups 
corresponding to dominant space directions. The method for vanishing point detection used 
here relies on van den Heuvel (1998) and Rother (2000), who employ the additional criterion 
of orthogonality of space line directions for establishing vanishing points of three mutually 
orthogonal directions. As suggested by Rother (2000), the image plane itself is best chosen as 
the accumulator space thanks to its property of preserving the original distances among points 
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and lines (translational and rotational invariance), while the intersections of all pairs of image 
line segments are selected as accumulator cells. 

For each possible vanishing point (accumulator cell) Rother (2000) computes the contribution 
of every image segment s by means of a voting scheme (also adopted in Bauer et al., 2002). 
Votes are the sum of two weighted contributions. The first stems from the angle α between 
the line segment s and the line joining its midpoint M with the specific vanishing point V. The 
weighted contribution of all segments for which α does not exceed a threshold α0 is inversely 
dependent on their value of α. The second weighted contribution is directly proportional to 
the length of the segment. Eventually, votes from all accepted segments for some vanishing 
point are added to yield the final ‘strength’ for this point. Empirical values for these two 
weighting factors are given in Rother (2002). 

Here, the need for weighting factors (one for angles, one for segment lengths) in the voting 
process is eliminated to allow a simpler uniform treatment of long and short segments. This 
succeeds by introducing the uncertainty σ (standard error) of the slope angle of each line as 
estimated from the line-fitting adjustment. This uncertainty (illustrated in Fig. 1 together with 
segment s, its midpoint M, vanishing point V and angle α) may also be regarded as the 
uncertainty of α. 

 

 

Figure 1. Angle α (formed by segment s and the line joining its midpoint M with potential 
vanishing point V) and its uncertainty σ. 

Hence, a realistic estimation of angle α formed by segment s and line VM is α + σ, namely 
the computed angle plus its uncertainty. The standard error σ, extracted from the covariance 
matrix of the line-fitting adjustment, reflects both the effect of random errors (deviations of 
points from the best-fitting line) as well as the effect of geometry of the adjustment, in which 
the length of the line segment plays the central role. Hence, the impact of segment length is 
incorporated in σ, combined at the same time with the standard error of image coordinates 
(since shorter segments do not necessarily produce larger uncertainties in slope and vice 
versa, depending on the quality of measured data). In this sense, there is no need for empirical 
weighting factors, and the vote v contributed by each segment for a particular vanishing point 
may be computed as 
 

0
v = 1−

α
+α σ  (1) 

 

with α0 being a suitable threshold value. The votes from all segments with (α+σ) < α0 for a 
particular vanishing point are accumulated, resulting in a total score for this potential 
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vanishing point. It might be observed here that, strictly speaking, the uncertainty of α is due 
not only to the orientation error of line segments but also to the uncertainty of their midpoint 
M; yet, this effect is regarded as negligible compared to the error of line slope. 

Next, the accumulator cells along with their corresponding final scores are checked (following 
Rother, 2000) against certain geometrical criteria for the determination of the three dominant 
vanishing points of mutually orthogonal space directions. It is to note that if one vanishing 
point is at infinity, only the locus of the principal point may be found (the segment of the 
vanishing line defined by the other two points). If two vanishing points are at infinity, the 
third fixes the principal point (e.g. nadir point in vertical imagery) but the camera constant 
cannot be found. It is noted that the above constraints could be introduced into the algorithm 
to accept infinite vanishing points, too. Here, however, the primary intention is to perform full 
camera calibration from a single image. Consequently, in the search process only triplets of 
finite vanishing points forming acute triangles are considered (orthogonality criterion). 
Further, a principal point (orthocentre of the triangle) is generally expected to lie close to the 
image centre, while computed camera constants should have ‘reasonable’ values (camera 
criterion). Vanishing point triplets which satisfy these criteria are accepted and sorted 
according to their total vote; that with the highest score is chosen as the final triplet of 
dominant vanishing points. 

As a result of this process it is in fact possible that irrelevant 3D lines whose projection planes 
happen to pass through a vanishing point may be mistakenly assigned to this vanishing point, 
or that image segments close to vanishing lines might be accepted to participate in the 
estimation of two vanishing points. Such misinterpretations in the positions of 3D lines appear 
as inevitable in a fully automated process, yet no significant effect on calibration results is 
expected if the angular threshold α0 is kept small. 

2.2. Camera calibration algorithm 

The algorithm for camera calibration involves two sets of equations (linked to each other 
through common unknowns), namely those of line-fitting and those relating the coordinates of 
vanishing points to the parameters of camera geometry. 

2.2.1. Line fitting 

As mentioned, the estimation of camera constant and principal point location from three 
detected vanishing points of mutually orthogonal space directions is a straightforward task. 
Radial symmetric lens distortion may be estimated in a preceding step either through the 
‘plumb-line’ technique (Brown, 1971; Devernay and Faugeras, 2001; Thormaehlen et al., 
2003) based on the fact that a projected straight line should remain straight on the image or, 
on the other hand, along with vanishing point estimation (Becker and Bove, 1995; van den 
Heuvel, 1999; Bräuer-Burchardt and Voss, 2001) assuming that parallel straight lines in space 
are imaged as converging straight lines. Unlike approaches in which estimation of vanishing 
points precedes the calibration process, a main issue here is the line-fitting adjustment of 
image point observations for vanishing point estimation, interior orientation recovery and 
radial distortion compensation in one single step.  

The observed image lines are constrained to converge to their corresponding vanishing point 
V(xV, yV) according to following equation  
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( )V V(x x cosθ y y sinθ 0)− + − =

( )(

 (2) 

 

whereby x, y are the image coordinates of an individual point on a line. Introduction of the 
two coefficients k1, k2 of radial symmetric lens distortion into Eq. 2 results in: 

 

) ( )( )V V2 4 2 4o 1 2 o 1 2x x x k r k r x cosθ y y y k r k r y sinθ 0⎡ ⎤ ⎡ ⎤− − + − + − − + − =⎣ ⎦ ⎣ ⎦  (3) 

 

with (xo, yo) denoting the principal point and r the radial distance from it. This represents the 
observation equation for the common adjustment of all line segments (the root mean square 
distance of points x, y from the fitted line is minimized). 

2.2.2. Vanishing points and interior orientation 

2.2.2.1. The ‘calibration sphere’ 

As mentioned already, two known vanishing points V1, V2 of orthogonal directions allow 
estimation of the camera constant only under the assumption of fixed principal point (usually 
the image centre). However, a constraint is always at work on the infinite possible locations of 
the projection centre O when only two vanishing points of orthogonal directions are known: O 
must view the segment V1V2 under a right angle. Thus, in the 3D image space the geometrical 
locus of O is a sphere (‘calibration sphere’) of radius R, with the midpoint M of line segment 
V1V2 as its centre and the distance V1V2 as its diameter. For every possible projection centre 
O, the camera constant c equals its distance from the image plane, while the principal point P 
is its projection onto it (Fig. 2). 

Figure 2. Calibration sphere as locus of the projection centre O, principal point locus (ppl) for 
fixed camera constant c and isocentre circle (icc). V1 and V2 are the vanishing points of 
orthogonal directions, M is the midpoint of segment V1V2. 

The analytical equation of the sphere can be written as:  

 

o m o m
2 2 2 2(x x (y y R) ) c =− + − +  (4) 
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whereby 

 

1 2
m

x xx 2
+=      

1 2
m

y yy 2
+

=      ( ) ( )1 2 1 2
221 x x y yR 2

− + −=  (5) 

 

with (x1, y1), (x2, y2) being the two vanishing points, (xm, ym) the centre of the sphere and R 
its radius. Each pair of vanishing points of orthogonal directions provides one such Eq. 4. 
Two pairs of such vanishing points (from the same image or from a different image sharing 
identical internal parameters) define a circle as the intersection of the corresponding spheres, 
whereas a third pair fixes the projection centre at the common point of the three ‘calibration 
spheres’ (Fig. 3). The projection centre O is, of course, that for which c > 0 (point ‘above’ the 
image plane), hence one should speak of ‘calibration hemispheres’ rather than spheres. 

 

Figure 3. Projection centre O as intersection of three ‘calibration spheres’ and principal point 
P as its projection on the image plane. 

It is worth noting that Eq. 4 can also be viewed as that of a circle on the image plane with 
centre (xm, ym) and radius (R2 − c2)½. This circle ppl is the locus of the principal point P for a 
given camera constant c (Fig. 2). Indeed, c constrains the projection centre O on a circle of the 
sphere which is parallel to the image plane and, projected orthogonally onto it, defines the 
principal point locus (ppl in Fig. 2). It may also be observed that circle icc, in which the image 
plane intersects the sphere (Fig. 2), is in fact the locus of the ‘isocentre’, namely the point 
defined as the intersection of the image plane by the bisector of the angle formed by the image 
rays to the principal point and to the third vanishing point. This point is mentioned in 
photogrammetric literature mainly for its properties as regards measurement of angles on flat 
terrain (Church and Quinn, 1948). 

Eq. 4 is the constraint relating vanishing points to the primary parameters of camera geometry 
and is used, along with Eq. 3, in the calibration adjustment which will be outlined in section 
2.2.3. However, some additional remarks are useful here regarding image aspect ratio as well 
as the relation of the presented geometric interpretation to the image of the absolute conic and 
to plane-based calibration. 
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2.2.2.2. Consideration of aspect ratio 

Square image pixels have been assumed so far. For non-square pixels, the camera aspect ratio 
a expresses the relative scaling of image axes (for a normal camera a = 1). Let a < 1 be the 
scale factor for the vertical (y) coordinates of the image points which, thus scaled, are the 
orthogonal projections of the theoretical ‘normal’ points onto an image plane which is tilted 
by angle β (cosβ = a) about the x-axis (Fig. 4). The calibration sphere still holds for the 
normal image plane nip but the projection of the ‘isocentre circle’ icc is now an ellipse ice on 
the transformed (affine) image plane aip. The same is true for the locus of the principal point. 

 

 

Figure 4. The isocentre ellipse (ice) is the orthogonal projection of the isocentre circle (icc) 
from the normal image plane (nip) onto the affine image plane (aip). The angle β between 
these two image planes with common x-axis is related to the aspect ratio a as β = cos−1a. 

 

In this case, the calibration equation Eq. 4 becomes: 

o m o m
2 2

2
(x x (y y R1) ) 2 2c =⎛ ⎞− + − +⎜ ⎟

⎝ ⎠a
 (6) 

with 

( )( )1 2 1 2
22

2
1 x x y yR 2

1− + −=
⎛ ⎞
⎜ ⎟
⎝ ⎠a

 

 

2.2.2.3. Calibration sphere and image of the absolute conic  
 

In the field of computer vision, three vanishing points in orthogonal directions are also used in 
order to compute the image ω of the absolute conic, whose expression is subsequently 
decomposed to extract the camera internal parameters in the form of the ‘calibration matrix’ 
(Liebowitz et al., 1999; Sturm and Maybank, 1999). The conic ω is defined as: 

 
T 1− −= K Kω  (7) 
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T 0=v vω

2

 

where K is the calibration matrix (Hartley and Zisserman, 2000). A pair of orthogonal 
vanishing points v1, v2 (in homogeneous representation) supplies a linear constraint on the 
entities of ω of the form 

 

1 2  (8) 

 

Three such pairs allow estimation of the calibration matrix of a normal camera. However, 
with ω being an imaginary conic, the geometric relation of the vanishing points with the 
camera internal parameters is not obvious. Ignoring image aspect ratio and skewness, ω may 
be written as:  

 

o

o
2 2 2o o o o

1 0 x

0 1 y

x y x y c

−

= −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

ω  (9) 

 
 

Introduction of Eq. 9 into Eq. 8, with v1 = (x1, y1, 1)T, v2 = (x2, y2, 1)T in inhomogeneous 
representation, yields Eq. 4. Thus, the constraint of Eq. 8 and the equation of the ‘calibration 
sphere’ are equivalent for inhomogeneous notation of vanishing points. 

2.2.2.4. Calibration sphere and plane-based calibration 

The calibration sphere is also relevant in the case of plane-based calibration, a process which 
estimates interior orientation using homographies H between a plane with known Euclidean 
structure and its images (Zhang, 2000). The two basic equations of plane-based calibration 
are: 

 
T1 2 0=h hω  (10)
T T1 1 2=h h h hω ω  (11)

 

with h1 = [H11, H21, H31]T, h2 = [H12, H22, H32]T being the first two columns of the H matrix. 
Each homography supplies two such constraints on the elements of ω. Viewing the problem 
of plane-based calibration in a more intuitive geometric context, Gurdjos et al. (2002) proved 
that the solution is equivalent to intersecting circles (‘centre circles’). Such a circle is the 
locus of the projection centre when space-to-image homography is known, and it may be 
obtained as the intersection of a sphere (centre sphere) and a plane (centre plane). In 
photogrammetric terminology, this plane (typically defined in aerial images as the vertical 
plane containing the camera axis) is the ‘principal plane’. In fact, Eq. 10 is equivalent to the 
calibration sphere presented here. Eqs. (10) and (4) can be written as: 
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2 0

 
T1 2D = 0=h hω  

o m o m
2 2 2G (x x (y y R) ) c= −− + − + =  

 

Taking into account that v1 = [H11, H21, H31]T, v2 =[H12, H22, H32]T with respect to the 
elements of homography H and substituting them into G, it can be proved that G is equivalent 
to D on the condition that H31H32 ≠ 0. This indicates that the first equation of plane-based 
calibration (Eq. 10) is indeed that of the calibration sphere when both vanishing points are 
finite. 

2.2.3. The camera calibration adjustment 

Coming now to the camera calibration adjustment, this involves observation equations – one 
Eq. 3 for each point on every line segment – and the constraint equations Eq. 4 which 
introduce an additional unknown, the camera constant c. Common unknowns are the 
coordinates of all vanishing points as well as the coordinates xo, yo of the principal point (as 
said, no distinction is made here between the point of best symmetry of distortion and the 
principal point). If Eqs. (4) are treated as strict constraints, solution of the system of 
observation equations (Eqs. 3) requires approximate values for the coefficients of radial 
distortion. However, if Eqs. (4) are treated as observation equations with very large weights, it 
appears that initial values for k1, k2 may be set to zero, at least as experienced with the 
moderately wide-angle lenses with field of view up to 65° used in our experiments. It is also 
noted that the initial values for the location of vanishing points are supplied by the detection 
process of section 2.1.2, from which approximate values for the interior orientation 
parameters are computed through the equations given in Gracie (1968). 

After the first iteration, the estimated coefficients of radial distortion are used to correct the 
initial (distorted) extracted edge points. The edge-linking process is repeated to allow 
formation of longer line segments using a reduced threshold of line ‘straightness’. Thus, new 
candidacies for vanishing points emerge, and the search process results in the final triplet of 
vanishing points. Their position is then optimized with a least squares adjustment to provide 
refined values for line slopes. In order to identify convergent line segments which belong to 
the same line, all segments are checked in pairs. If the root mean square distance of all points 
of both segments from the fitted line equation of the other segment is below a threshold, such 
segments are seen as parts of the same image line and are treated as such in the next iterations. 

In a previous publication, one single equation incorporating line-fitting, camera calibration 
and estimation of image attitude using vanishing points was proposed (Grammatikopoulos et 
al., 2003). Yet that approach appears to be more sensitive to image noise and outliers than the 
‘calibration hemispheres’ which do not involve the image rotation matrix. Thus, the presented 
algorithm performs exclusively camera calibration (therefore, it is irrelevant which particular 
vanishing points are assigned to the X, Y or Z axes). Finally, it is reminded that, next to its 
applicability to single images with three finite vanishing points of mutually orthogonal 
directions, a basic advantage of this general algorithm is that further pairs of orthogonal 
vanishing points from the same or different views may be combined to estimate a common 
interior orientation. While three vanishing points of orthogonal directions allow finding only 
the primary internal camera parameters, further interior orientation parameters such as the 
image aspect ratio can be estimated at the expense of an additional pair of vanishing points 
from the same or a different image (Grammatikopoulos et al., 2004). 
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3. Experimental results and discussion 
The experimental evaluation with real data involves two groups of 800×600 images, taken 
with different cameras and shown in Fig. 5 (set I, four images) and Fig. 6 (set II, six images). 
These are typical terrestrial images, and thus allow to test the approach under commonly 
existing practical conditions, in the sense that they have been acquired with small upward 
tilts, i.e. they have rather weak perspectives in the vertical direction (vanishing point far from 
image centre). This geometry has a direct effect on the precision of the estimated x-coordinate 
(xo) of the principal point (van den Heuvel, 1999). Besides, the two first images in set II have 
been taken also with an in-plane rotation of about  90°, which results in a similar effect on the 
y-coordinate of the principal point (yo). In set I, the second and third images have been 
acquired from standpoints which are very close to each other. 

 

Figure 5. Set I of images used in the evaluation. 

Figure 6. Set II of images used in the evaluation. 

The steps of line extraction and grouping are illustrated in Figs. 7 and 8. Initial extracted 
edges which exceeded 20 pixels in length are shown on the left. Using the angular threshold 
α0 = 2°, these edges were subsequently assigned to three dominant vanishing points (centre). 
The final line segments, which were generated after the correction of radial lens distortion and 
then used for calibration, are seen on the right. Two segments were treated as part of the same 
image line if the overall root mean square distance of their points from the line equation of the 
other segment did not exceed 2 pixels. 

 

Figure 7. Initial extracted edges (left), line segments grouped in dominant vanishing points 
(centre) and final segments (right) after correction of lens distortion [third image in Fig. 5]. 
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Figure 8. Initial extracted edges (left), line segments grouped in dominant vanishing points 
(centre) and final segments (right) after correction of lens distortion [last image in Fig. 6]. 

Tables 1 and 2 present the calibration results from vanishing points for each image as well as 
for the common adjustment of all four and six images of sets I and II, respectively, along with 
the estimated precision of parameter values, the standard error σo of the adjustment and the 
total number of participating lines and points. The rather large values of σo in Tables 1 and 2 
are due to the threshold for segment linking (the initial extracted edges gave values for σo 
about half as large), which however is necessary if longer segments are to be formed. In order 
to obtain directly comparable values for the camera constant and the coefficients of the 
distortion polynomial, the latter must be brought to some ‘calibrated’ form. This was done 
here according to Karras et al. (1998) by minimizing through integration the sum of squares 
of distortion values up to the radial distance rmax = 400 pixels. Tables 3 and 4 present the three 
coefficients of the new polynomial kor + k1r3 + k2r5, along with the corresponding calibrated 
values ccal = c/(1+ko) for the camera constant. The calibrated curves for both image sets are 
seen in Fig. 9. 

 
Table 1. Camera calibration results from vanishing points 

and bundle adjustments without control points (b) and with control points (B) – Set I 
images 

1 
2 
3 
4 
all 
b 
B 

c (pix) 
798.6 ± 0.9 
790.4 ± 0.8 
791.3 ± 0.7 
798.2 ± 0.6 
795.0 ± 0.4 
795.4 ± 1.6 
794.9 ± 1.0 

xo (pix) 
-1.5 ± 2.0 
-1.9 ± 1.7 
-1.9 ± 1.6 
-5.1 ± 1.3 
-6.0 ± 0.7 
 0.8 ± 3.0 
 4.4 ± 0.7 

yo (pix) 
-6.2 ± 0.8 
-4.1 ± 0.7 
-3.8 ± 0.6 
-6.8 ± 0.7 
-4.9 ± 0.3 
 3.2 ± 5.9 
 1.7 ± 0.6 

k1 (×10-7 pix-2)
-2.79 ± 0.12 
-2.34 ± 0.10 
-2.46 ± 0.09 
-2.61 ± 0.10 
-2.51 ± 0.05 
-3.21 ± 0.17 
-3.23 ± 0.12 

k2 (×10-13 pix-4)
5.57 ± 0.63 
3.75 ± 0.47 
4.32 ± 0.43 
5.15 ± 0.51 
4.56 ± 0.25 
4.11 ± 1.10 
3.86 ± 0.87 

σo (pix) 
0.53 
0.59 
0.57 
0.58 
0.57 
0.13 
0.13 

# lines 
206 
231 
230 
215 
882 

- 
- 

# points
  3877 
  4612 
  4674 
  5109 
18272 

- 
- 

 
Table 2. Camera calibration results from vanishing points 
and bundle adjustment without control points (b) – Set II 

images 
1 
2 
3 
4 
5 
6 
all 
b 

c (pix) 
896.2 ± 0.8 
897.3 ± 0.8 
908.2 ± 1.7 
900.2 ± 1.2 
902.5 ± 1.4 
903.6 ± 1.3 
899.2 ± 0.4 
898.2 ± 3.6 

xo (pix) 
  6.8 ± 0.6 
11.4 ± 0.6 
14.2 ± 2.1 
13.9 ± 1.6 
  3.5 ± 1.8 
18.5 ± 1.3 
10.7 ± 0.4 
  6.6 ± 1.6 

yo (pix) 
-15.3 ± 0.9
-10.9 ± 1.1
  -6.8 ± 1.4
  -8.3 ± 0.8
  -5.5 ± 1.1
  -2.6 ± 0.8
  -9.0 ± 0.3
  -7.7 ± 1.6

k1 (×10-8 pix-2)
  -8.65 ± 0.59 
  -9.03 ± 0.63 
-11.67 ± 0.97 
  -4.30 ± 0.83 
  -7.67 ± 0.80 
  -7.47 ± 0.70 
  -7.82 ± 0.29 
  -8.97 ± 1.24 

k2 (×10-13 pix-4)
-1.64 ± 0.25 
-2.38 ± 0.26 
-1.39 ± 0.42 
-3.97 ± 0.33 
-2.38 ± 0.29 
-3.41 ± 0.26 
-2.56 ± 0.12 
-2.54 ± 0.52 

σo (pix) 
0.45 
0.44 
0.40 
0.39 
0.36 
0.39 
0.42 
0.27 

# lines 
124 
134 
  88 
  94 
  84 
  88 
612 

- 

# points
  2895 
  2826 
  1840 
  2138 
  1999 
  2248 
13946 

- 
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Table 3. Transformed distortion coefficients and 
corresponding calibrated camera constant ccal [= c/(1+ko)] – Set I 

images 
1 
2 
3 
4 
all 
b 
B 

ccal (pix) 
782.6 
776.4 
776.9 
783.3 
780.3 
775.4 
774.6 

ko(×10-2) 
2.031 
1.807 
1.857 
1.908 
1.878 
2.573 
2.618 

k1 (×10-7 pix-2)
-2.733 
-2.298 
-2.414 
-2.560 
-2.463 
-3.127 
-3.145

k2 (×10-13 pix-4) 
5.457 
3.682 
4.240 
5.052 
4.474 
4.004 
3.759 

 
Table 4. Transformed distortion coefficients and 

corresponding calibrated camera constant ccal [= c/(1+ko)] –  Set II 
images 

1 
2 
3 
4 
5 
6 
all 
b 

ccal (pix) 
887.3 
887.4 
896.9 
892.7 
893.7 
893.9 
890.0 
888.2 

ko(×10-2) 
1.002 
1.118 
1.254 
0.843 
0.990 
1.083 
1.024 
1.130 

k1 (×10-8 pix-2)
  -8.563 
  -8.929 
-11.455 
  -4.264 
  -7.594 
  -7.389 
  -7.740 
  -8.867 

k2 (×10-13 pix-4) 
-1.624 
-2.353 
-1.373 
-3.936 
-2.356 
-3.373 
-2.534 
-2.512 

 

Figure 9. Calibrated radial lens distortion curves (left: image set I; right: image set II) from 
vanishing points (four thin lines) and from multi-image bundle adjustment without control 
(thick red line). 

Additionally, Tables 1 to 4 include corresponding results from self-calibrating bundle 
adjustments without use of ground control (b), which allows to compare estimations not based 
on external information. For set I, the block consisted of five convergent overlapping images 
of a different object with considerable extension in depth. Since here control points were 
indeed available, calibration results based on them are also included in Tables 1 and 3 (B). 
Note the significant uncertainty of the estimated principal point location in the absence of 
ground control. In the case of set II, the block consisted of eight overlapping images of the 
same 3D object, while no external control was at hand. Most points used in the first block 
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were signalized, which accounts for the smaller standard error of the adjustment as compared 
to that from the second block. 

Calibration results from vanishing points of single images appear as being rather consistent. 
Referring to Tables 3 and 4 for the two cameras, all differences among individual values for 
the camera constant c as well as all differences of these individual c-values from the 
corresponding c-values estimated by bundle adjustment do not exceed 1.1%. The differences 
of the mean of individual c-values estimated through vanishing points from the c-value 
obtained with bundle adjustment with no control are 0.6% and 0.4% for the two cameras. The 
respective values for the difference of the c-value obtained by the common adjustment of all 
individual images from the bundle solution are 0.7% and 0.2%. 

Regarding radial distortion, it is seen from Fig. 9 that the use of vanishing points yields 
almost identical curves for set I (maximum difference is 0.2 pixels). The curves for set II are 
also in agreement, with maximal differences at the image corner not exceeding 0.7 pixels; the 
curve from bundle adjustment passes among these curves. In image set I, however, results 
from vanishing points seem to significantly underestimate distortion compared to bundle 
adjustment, with maximal differences reaching 2 pixels at the image corners (obviously, this 
difference has an effect on the calibrated c-values of Table 3). This discrepancy regarding the 
particular images of set I might be attributed to the rather poor distribution of lines which do 
not cover adequately the whole image area. Nonetheless, one should not fail to mention an 
inherent limitation of this approach, namely that typical images are not likely to have both a 
strong perspective and lines recorded near the image corners. 

As mentioned, the precision of the estimated principal point coordinates xo, yo is indeed lower 
in the direction perpendicular to that of the ‘weak’ vanishing point (yo in the first two images 
of set II, xo in all other cases). Furthermore, differences in the location of the principal point 
appear here as being large. However, differences of several pixels are generally to be 
expected, actually not only in cases based on vanishing points (e.g. compare results given in 
Wang and Tsai, 1990) but also among bundle adjustments of different image blocks. Ruiz et 
al. (2002) point to the fact that when standard calibration algorithms are applied to different 
image sequences from a fixed camera they generally display acceptable stability in the camera 
constant, but the principal point location is estimated with large variability. In this context, 
even if calibration data from bundle adjustment are at hand a direct comparison of parameter 
values may not be conclusive. 

Indeed, Zhang et al. (1996) have demonstrated that it is very difficult to estimate precisely by 
calibration the coordinates of the principal point; yet, even large variations in the principal 
point location do not affect significantly the 3D reconstruction. Thus, the discussion here will 
also involve object reconstruction as an additional evaluation criterion. In a sense, this may be 
regarded as providing the missing ‘ground truth’, whose lack is a problem when quantifying 
the performance of non-metric calibration approaches on the basis of real images 
(Swaminathan and Nayar, 2000). 

In order to assess the actual impact of the differences among calibration results, the 3D point 
coordinates reconstructed through self-calibrating bundle adjustment without control points 
were correctly scaled and used as the reference point set. The model points reconstructed 
through bundle adjustments, in which the calibration results from individual images based on 
vanishing points were alternately introduced as fixed values, were then compared with the 
reference point set. Consequently, differences in 3D reconstruction may be exclusively 
attributed to the differences in calibration data. The standard errors σXYZ of 3D similarity 
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transformations for all cases of both cameras are presented in Table 5. In order to be 
comparable, these values have been referred to image space through the mean image scale of 
the respective block. Since in the block of the first camera the point coordinates were known 
with high precision, the results from adjustments with both self-calibration and fixed 
calibration were also compared to the geodetic coordinates (g in Table 5). It is noted that the 
objects of both bundle blocks displayed considerable differences in depth, which is clearly 
important when comparing the effects of calibration data. 

 
Table 5. Accuracy of 3D object reconstruction referred to models 

from bundle adjustment with no control (b) and to geodetic control (g) 
 

calibration data 
from image 1 
from image 2 
from image 3 
from image 4 
from image 5 
from image 6 

from all images 
bundle (b) 

Set I (g) 
σXYZ (pixel) 

0.4 
0.4 
0.4 
0.5 
- 
- 

0.4 
0.2 

Set I (b) 
σXYZ (pixel) 

0.4 
0.4 
0.4 
0.6 
- 
- 

0.5 
- 

Set II (b) 
σXYZ (pixel) 

0.6 
0.4 
0.8 
0.7 
0.8 
1.0 
0.3 
- 

 

Differences in calibration results are responsible for these discrepancies in 3D reconstruction. 
Even so, however, calibration data obtained automatically from vanishing points on single 
images with no geodetic control allowed to perform 3D measurements (in the case of the first 
camera in an altogether different scene) with a mean accuracy not worse than 1 pixel in object 
space. For the first camera this has also been verified against ground control. Thus, the 
presented tests indicate that the automatic single-image calibration approach through 
vanishing points, as reported here, shows good consistency and gives results which may 
definitely serve as initial values, but also as known calibration data for tasks of moderate 
accuracy requirements. 

 

4. Concluding remarks 
In this paper the development and implementation of a camera calibration algorithm from 
single images with three vanishing points of orthogonal space directions is presented. A 
particular feature of the approach is that the camera constant, the principal point location as 
well as the two coefficients of radial symmetric lens distortion and the image vanishing points 
are all estimated simultaneously. This succeeds iteratively in a unified least-squares 
adjustment of all image points belonging to lines which intersect in the three dominant 
vanishing points of the scene. A further feature of this one-step algorithm is that it is equally 
suitable for the joint calibration of independent images with three and/or two vanishing 
points. Extraction of line segments and their association with particular vanishing points runs 
fully automatically, based on a modification of the approach of Rother (2000), while edges 
are linked anew after the first estimation of lens distortion. The evaluation against results from 
self-calibrating bundle adjustments indicated that this approach may, in principle, provide 
information on camera geometry which could be useful not only in terms of starting values 
but also, on several occasions, as fixed camera data. Clearly, further evidence from different 
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images and cameras, as well as experimentation with the involved thresholds, is necessary for 
a more thorough assessment of the method. 

Of course, this approach is subject to all limitations present when working with vanishing 
points, namely its accuracy depends not only on image noise or possible deviations of lines 
from orthogonality and parallelism, but also on the distribution of image lines over the frame, 
their length, as well as the particular perspective distortion of the imaged scene. In this sense, 
an important further task would be to study, and possibly quantify in terms of a metric, the 
effect of the shape of the triangle defined by three vanishing points of orthogonal space 
directions on the precision of camera calibration. 
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