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ABSTRACT 
 
Single image calibration is a fundamental task in photogrammetry and computer vision. It is known that camera constant and princi-
pal point can be recovered using exclusively the vanishing points of three orthogonal directions. Yet, three reliable and well-distribu-
ted vanishing points are not always available. On the other hand, two vanishing points basically allow only estimation of the camera 
constant (assuming a known principal point location). Here, a camera calibration approach is presented, which exploits the existence 
of only two vanishing points on several independent images. Using the relation between two vanishing points of orthogonal direc-
tions and the camera parameters, the algorithm relies on direct geometric reasoning regarding the loci of the projection centres in the 
image system (actually a geometric interpretation of the constraint imposed by two orthogonal vanishing points on the ‘image of the 
absolute conic’). Introducing point measurements on two sets of converging image lines as observations, the interior orientation pa-
rameters (including radial lens distortion) are estimated from a minimum of three images. Recovery of image aspect ratio is possible, 
too, at the expense of an additional image. 
Apart from line directions in space, full camera calibration is here independent from any exterior metric information (known points, 
lengths, length ratios etc.). Besides, since the sole requirement is two vanishing points of orthogonal directions on several images, the 
imaged scenes may simply be planar. Furthermore, calibration with images of 2D objects and/or ‘weak perspectives’ of 3D objects is 
expected to be more precise than single image approaches using 3D objects. Finally, no feature correspondences among views are re-
quired here; hence, images of totally different objects can be used. In this sense, one may still refer to a ‘single-image’ approach. The 
implemented algorithm has been successfully evaluated with simulated and real data, and its results have been compared to photo-
grammetric bundle adjustment and plane-based calibration. 
 
 

1. INTRODUCTION 
 
Recovering camera interior orientation is a basic task in photo-
grammetry and computer vision. Camera calibration approaches 
are generally classified into several categories, depending upon 
the prior knowledge of the recorded scene (known or unknown 
object geometry) and the type of the calibration objects, namely 
3D object, plane pattern or 1D object (see Zhang, 2000; Gurdjos 
et al., 2002; Gurdjos & Sturm, 2003). Approaches, on the other 
hand, exploiting the existence of vanishing points have been re-
ported in photogrammetry (Gracie, 1968; Bräuer-Burchardt & 
Voss, 2001; v. d. Heuvel, 2001; Grammatikopoulos et al., 2003) 
as well as in computer vision (Caprile & Torre, 1990; Liebowitz 
et al., 1999; Cipolla et al., 1999; Sturm & Maybank, 1999). This 
type of approach in fact exploits parallelism and perpendiculari-
ty among object primitives, commonly present in a man-made 
environment, for calibration and reconstruction purposes. 
 
Indeed, it is known that the primary elements of interior orienta-
tion (camera constant, principal point location) can be recover-
ed – along with the camera rotation matrix – using three ortho-
gonal vanishing points on an image, whereby the principal point 
is the orthocentre of the triangle formed by the three vanishing 
points (Merritt, 1958; Gracie, 1968). Results have been reported 
in this context by Karras & Petsa (1999) and Bräuer-Burchardt 
& Voss (2001) for historic images (using known length ratios, 
the latter authors also address cases where one vanishing point 
is close to infinity). To the same effect, v. d. Heuvel (2001) ad-
justed line observations with constraints among lines for camera 
calibration. Relying on Petsa & Patias (1994), the authors have 
recently reported and assessed a formulation which combines in 
a single step the processes of line fitting, camera calibration (in-
cluding radial lens distortion) and estimation of image attitude 
(Grammatikopoulos et al. 2003). Alternatively, in the context of 

computer vision, several researchers perform camera calibration 
using three vanishing points in orthogonal directions, in order to 
compute the image ω of the absolute conic, and to subsequently 
decompose its expression to extract the camera internal parame-
ters as the ‘calibration matrix’ (Liebowitz et al., 1999; Sturm & 
Maybank, 1999); the same outcome can be obtained by exploit-
ing the properties of the rotation matrix (Cipolla et al., 1999). 
Despite the different conceptual framework, however, it can be 
proved that these above approaches are essentially equivalent to 
the analytical photogrammetric scheme of Gracie (1968).  
 
But the existence on an image of three vanishing points suitable 
for reliable camera calibration (accurately recoverable and well 
distributed, i.e. none close to infinity) is admittedly not a trivial 
demand; pairs of vanishing points are considerably easier to ob-
tain. Unless additional object constraints are imposed, however, 
this image type allows only to recover the camera constant with 
the hypothesis of known principal point location. Using historic 
photographs, Petsa et al. (1993) have rectified with this method 
façades of demolished buildings. Although, however, one single 
image with two vanishing points lacks the information for a full 
camera calibration, the combination of such images supplies the 
equations necessary for this task. 
 
Thus, in this contribution a new camera calibration algorithm is 
developed, which exploits the existence of two vanishing points 
in orthogonal directions on several independent (single) images. 
Using the relation of these vanishing points to the camera para-
meters, the presented algorithm is based on a direct geometric 
interpretation regarding the locus of the projection centre in the 
image system. These loci are spheres, with centres belonging to 
the image plane and diameters fixed by the two orthogonal va-
nishing points. This non-linear equation involves explicitly the 
camera interior orientation parameters along with the four (in-
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homogeneous) coordinates of the vanishing points. On the basis 
of this equation, simultaneous adjustment of observed points on 
lines imaged in each view allows to estimate the interior orien-
tation elements of a ‘normal’ camera (camera constant, princi-
pal point) along with the radial symmetric lens distortion coeffi-
cients and, optionally, the image aspect ratio. Our approach pre-
sents certain similarities with that of Wilczkowiak et al. (2002), 
also a multi-view camera calibration approach not depending on 
image-to-image correspondences. A notable difference rests in 
the implicit involvement of vanishing points through the projec-
tion of parallelepipeds on the images, which apparently restricts 
the applications to scenes containing such primitives. 
 
The presented algorithm has been successfully applied to both 
simulated and real data, and the outcome has been compared to 
a rigorous photogrammetric bundle adjustment and to plane-ba-
sed calibration. 
 
 

2. GEOMETRIC FORMULATION  
 
2.1 The normal camera 
 
As mentioned above, Gracie (1968) has given the six necessary 
equations relating the three interior orientation elements (came-
ra constant, principal point) and image rotations (ω, φ, κ) to the 
vanishing points of three orthogonal directions. This is illustra-
ted in Fig. 1, where O is the projection centre, c the camera con-
stant and P(xo, yo) the principal point, with VX, VY, VZ being the 
respective vanishing points of the three orthogonal space direc-
tions X, Y, Z. The principal point P, namely the projection of O 
onto the image plane, is actually the orthocentre of the triangle 
VXVYVZ. Of course, the directions of the lines OVX, OVY, OVZ are 
respectively parallel to the X, Y, Z space axes (and consequently 
they are mutually orthogonal). 
 

 
Figure 1. Image geometry with three vanishing points. 

 
As mentioned already, in case two orthogonal vanishing points 
V1, V2 are known on the image plane while the third remains un-
known, estimation of the interior orientation is feasible only if a 
fixed principal point can be assumed (usually the image centre). 
Hence, with only two vanishing points, the possible locations of 
the projection centre are obviously infinite. Yet, a constraint is 
always present: the image rays OV1 and OV2 form a right angle 
for all possible locations of O. This bounds the projection centre 
onto a geometrical locus, encompassing all points which see the 
two vanishing points under a right angle. Therefore, all possible 
locations of O in the 3D image space form a sphere (named here 
a ‘calibration sphere’) of radius R, with the middle M of line seg-
ment V1V2 as centre and the distance V1V2 as its diameter. Every 
point on this sphere represents a possible projection centre; the 
camera constant c equals then its distance from the image plane, 
while the principal point P is its projection onto it (see Fig. 2). 
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Figure 2. Calibration sphere as locus of the projection centre, 
principal point locus (ppl) and isocentre circle (icc) 

 
The analytical equation of the sphere can be written as:  
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whereby (x1, y1), (x2, y2) are the two vanishing points, (xm, ym) 
is the centre of the sphere, R its radius and d its diameter. Every 
pair of orthogonal vanishing points gives one such Eq. (1). Two 
pairs of such vanishing points, from the same or from different 
images sharing identical internal parameters, define a circle (the 
intersection of the two spheres) as the locus for the projection 
centre, whereas a third pair – i.e. a third sphere – can fully cali-
brate the camera. In Fig. 3 the definition of the projection centre 
as intersection of three calibration spheres is illustrated. In actual  
fact, there exist two intersection points: ‘above’ and ‘below’ the 
image frame. This ambiguity is, of course, removed by keeping 
the point with c > 0 (point ‘above’ the image). In this sense one 
should speak of ‘calibration semi-spheres’ rather than spheres. 
 

O

P

 
Figure 3. Projection centre O as intersection of three calibration 

spheres and principal point P as its projection on the image. 
 
An equation equivalent to  Eq. (1) is: 
  

( ) ( )2 2 2 2
o m o mx x y y R c− + − = −  (2)

 
which describes a circle on the image plane with centre (xm, ym) 
and the radius (R2 − c2)½. This circle is the locus of the principal 
point P for a fixed camera constant c. In fact, as seen in Fig. 2, a 
fixed c constrains the projection centre on a circle of the sphere, 
which, being an intersection of the sphere with a plane parallel 
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to the image plane at a distance c from it, is also parallel to the 
image plane; when projected orthogonally onto it, the circle de-
fines the principal point locus (‘ppl’ in Fig. 2). 
 
On the other hand, it is worth mentioning that the circle formed 
as section of the sphere and the image plane itself (also seen in 
Fig. 2) is in fact the locus of the ‘isocentre’. This image point – 
known in photogrammetric literature, thanks to its properties as 
regards measurement of angles on flat terrain (Church & Quinn, 
1948) – lies on the bisector of the angle formed by the image 
rays to the principal point and to the third vanishing point (i.e. 
the vertical direction in the case of an oblique aerial image). Re-
cently, Hartley & Silpa-Anan (2001) have used this point, as the 
‘conformal point’, for measuring angles on the projected plane. 
 
A further interesting geometrical aspect is that Eq. (1), after the 
substitutions, takes the following form: 
 

( ) ( ) 2 2 21 o 2 1 o 2 o 1 o 1 o ox x x y y y x x y y x y c 0− + − − − + + + = (3)

 
This equation represents the line (vanishing line), which passes 
through the second vanishing point V2 (x2,y2), assuming that va-
nishing point V1 and interior orientation parameters are known. 
Eq. (3) is the main equation of the calibration process to follow.  
 
2.2 Consideration of the aspect ratio  
 
All preceding equations and geometric interpretations hold for 
the case of a ‘normal camera’, whose only parameters are the ca-
mera constant and the principal point, under the assumption of 
square image pixels. Yet, there is the possibility of a non-square 
pixel, especially in CCD cameras. In these cases, introduction of 
an additional parameter is needed, namely of the camera aspect 
ratio a, which grasps the relative scaling of the two camera axes 
(for a normal camera a = 1). However, addition of this parame-
ter does not change the basic geometric interpretation. Let a < 1 
be the scale factor for the vertical (y) coordinates of the image 
points which, thus scaled, are the orthogonal projections of the 
initial ‘normal’ points onto an image plane, tilted by the angle β 
(cosβ = a) about the x-axis. The calibration sphere still holds for 
the normal plane but the projection of the ‘isocentre circle’ is an 
ellipse on the transformed (affine) image plane (see Fig. 4). The 
same is also true for the locus of the principal point (which, of 
course, coincides with the isocentre locus for c = 0).   
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Figure 4. The isocentre ellipse (ice) is the orthogonal projection 
of the isocentre circle (icc) from the normal image plane (nip) 

onto the affine image plane (aip).The angle β between these two 
planes is related to the aspect ratio (a) as β = cos−1a. 

 
Calibration equations Eq. (1) and Eq. (3) become, respectively:  
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2.3 Calibration sphere and image of the absolute conic  
 
As mentioned above, recovery of interior orientation is possible 
through an estimation of the image ω of the absolute conic from 
three orthogonal vanishing points (Liebowitz et al., 1999). The 
conic ω is defined as:  

Τ 1− −= Κ Κω  (6)
 
where K is the calibration matrix (Hartley & Zisserman, 2000). 
Each pair of orthogonal vanishing points V1, V2 supplies a linear 
constraint on the entities of ω of the form    
 

T1 2 0=V Vω  (7)

 
whereby V1, V2 are in homogeneous representation. The two va-
nishing points are said to be conjugate with respect to ω. Three 
such pairs suffice for the estimation of the calibration matrix of 
a normal camera. Yet ω is an imaginary conic, and the geome-
tric relation of the vanishing points with the camera internal pa-
rameters is not obvious. Ignoring aspect ratio (and skewness), ω 
may be written as:  
  

o

o
2 2 2o o o o

1 0 x
0 1 y
x y x y c

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − + +⎣ ⎦
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Introducing Eq. (8) into (7), with V1 = (x1, y1, 1)T, V2 =(x2, y2, 1)T 
in inhomogeneous representation, yields Eq. (1), the equation of 
the ‘calibration sphere’. This means that constraint (7) and the 
sphere equation (1) are equivalent for inhomogeneous notation 
of vanishing points. 
 
Next it will be seen that the calibration sphere is also relevant in 
the case of plane-based calibration, a process which estimates 
interior orientation using homographies H between a plane with 
known Euclidean structure and its images (Zhang, 2000). The 
two basic equations of plane-based calibration are: 
 

T1 2 0=h hω  (9)

T T1 1 2 2=h h h hω ω  (10)

 
where h1 = [H11, H21, H31]T, h2 = [H12, H22, H32]T are the first two 
columns of the H matrix. Each homography H provides two such 
constraints (9), (10) on the elements of ω. Gurdjos et al. (2002) 
put the problem of plane-based calibration into a more intuitive 
geometric framework, by proving that the solution is equivalent 
to intersecting circles (‘centre circles’). The centre circle is the 
locus of the projection centre when space-to-image homography 
is known and can be obtained as intersection of a sphere (centre 
sphere) and a plane (centre plane). In photogrammetric termino-
logy, this plane – typically defined in aerial images as the verti-
cal plane containing the camera axis – is the ‘principal plane’. 
 
In fact, Eq. (9) is equivalent to the calibration sphere presented 
here. Using Eqs. (9) and (1), it is set: 
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T1 2D 0= =h hω  

( ) ( )2 2 22o m o mG x x y y c R 0= − + − + − =  
 
Taking into account that V1 = [H11, H21, H31]T, V2 =[H12, H22, H32]T 
with respect to the elements of homography H and substituting 
them into G, it can be proved that G is equivalent to D only if 
H31H32 ≠ 0, which indicates that the first equation of plane-based 
calibration – Eq.(9) – is that of the calibration sphere when both 
vanishing points are finite. 
 
 

3. THE CALIBRATION ALGORITHM 
 
The developed calibration algorithm relies on the simultaneous 
estimation of two orthogonal vanishing points on each view, to-
gether with their common interior orientation elements. The va-
nishing points are estimated from individual point observations 
xi, yi on converging image lines. The fitted lines are constrained 
to converge to a corresponding vanishing point V(xV, yV) accord-
ing to following observation equation, whereby t represents the 
slope ∆x/∆y of the converging line with respect to the y axis: 
 

( )V Vi ix x y y t 0− − − =  (11)
 
According to each line direction, Eq. (11) is also formulated in 
terms of the slope t = ∆y/∆x with respect to the x-axis. Finally, 
introducing the coefficients k1, k2 of the radial symmetric lens 
distortion, Eq. (11) becomes (Gammatikopoulos et al., 2003): 
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The sum of squares of the image coordinate residuals are mini-
mised in the adjustment. Alternative formulations of these equa-
tions are also possible, in order to minimise the distances of the 
points from the fitted line. Each individual point on a line of an 
image offers one such condition, (11) or (12), to the adjustment. 
Besides, every pair of vanishing points in orthogonal directions 
gives rise to one Eq. (1) or, equivalently, Eq. (3). It is clear that, 
if the normal camera is assumed, three pairs of vanishing points 
(i.e. images) suffice for an estimation of the internal camera pa-
rameters. The image aspect ratio a can also be integrated, at the 
expense of one additional pair of vanishing points (one image)  
using Eq. (4) or (5) instead of (1) or (3). All equations above are 
non-linear with respect to the unknowns, thus imposing a need 
for initial values. Generally, the principal point may be assumed 
at the image centre, the camera constant can then be approxima-
ted using a pair of vanishing points, line slope is estimated from 
two line points, while vanishing point coordinates can be appro-
ximated using two converging lines. Finally, it is worth noting 
that vanishing points might be weighted with the corresponding 
elements of the covariance matrix from a previous solution. 
 
 

4. PRACTICAL EVALUATION 
 
4.1 Synthetic data 
 
For the practical evaluation of the algorithm both simulated and 
real data have been used. First, three sets consisting of 7, 13 and 
22 synthetic images (1600×1200) of a 10×10 planar grid were 
generated with random exterior orientation (Fig. 5). All interior 
orientation parameters were kept invariant: c = 1600, xo = 802, 
yo = 604, k1 = 2×10−8, k2 = −3.5×10−14 (the aspect ratio has been 
ignored). Gaussian noise with zero mean and three standard de-
viations σ (±0.1, ±0.5, ±1 pixel) was added to the image points. 

Figure 5. Some of the synthetic images used in the evaluation.
 
For all image sets, results were compared with plane-based cali-
bration and self-calibrating bundle adjustment. Plane-based ca-
libration was carried using the ‘Calibration Toolbox for Matlab’ 
of Bouguet (2004), available on the Internet (the latest version 
and complete documentation may be downloaded from the cited 
web site). The bundle adjustment – in which no tie points were 
used – has been carried out with the software ‘Basta’ (Kalispe-
rakis & Tzakos, 2001). All results are presented in Tables 1–3. 
 

Table 1. Results from 7 simulated images (noise: ±σN pixel) 
σN  ∆c 

(‰) 
∆xo 

(pixel)
∆yo 

(pixel) 
k1

 

(×108) 
k2 

(×1014)
σο 

(pixel)
CS −0.26 −0.59 −0.20 1.95 −3.40 ±0.10 
PB 0.15 0.01 0.02 1.96 −3.43 ±0.10 0.1 
BA 0.20 −0.03 0.16 1.95 −3.43 ±0.09 
CS 1.42 1.39 −0.88 2.02 −3.66 ±0.51 
PB 0.10 0.56 −0.08 1.99 −3.50 ±0.50 0.5 
BA 0.08 0.55 −0.15 2.00 −3.49 ±0.50 
CS 1.99 −0.05 −2.90 1.93 −3.35 ±0.99 
PB 1.62 −1.37 −2.58 1.70 −3.23 ±0.99 1.0 
BA 1.54 −1.32 −2.42 1.70 −3.23 ±1.00 

 
Table 2. Results from 13 simulated images (noise: ±σN pixel) 
σN  ∆c 

(‰) 
∆xo 

(pixel)
∆yo 

(pixel) 
k1

 

(×108) 
k2 

(×1014)
σο 

(pixel)
CS −0.28 −0.15 −0.13 2.03 −3.55 ±0.10 
PB −0.19 −0.05 −0.17 2.02 −3.54 ±0.10 0.1 
BA −0.18 −0.05 −0.11 2.02 −3.55 ±0.10 
CS 0.80 −2.90 −1.57 1.91 −3.37 ±0.50 
PB −0.62 −1.13 −0.93 1.80 −3.20 ±0.49 0.5 
BA −0.59 −1.23 −0.90 1.80 −3.20 ±0.50 
CS 1.49 −2.41 0.77 2.03 −3.46 ±0.97 
PB 2.11 −0.98 1.22 1.78 −3.28 ±0.97 1.0 
BA 2.13 −0.90 1.31 1.79 −3.29 ±0.98 

 
Table 3. Results from 22 simulated images (noise: ±σN pixel) 
σN  ∆c 

(‰) 
∆xo 

(pixel)
∆yo 

(pixel) 
k1

 

(×108) 
k2 

(×1014)
σο 

(pixel)
CS 0.15 0.02 0.12 1.99 −3.50 ±0.10 
PB 0.11 −0.02 0.05 2.00 −3.50 ±0.10 0.1 
BA 0.17 −0.04 0.08 2.00 −3.50 ±0.10 
CS 0.13 −1.43 −2.09 2.00 −3.50 ±0.51 
PB 0.26 −0.64 −0.18 1.98 −3.49 ±0.50 0.5 
BA 0.29 −0.74 −0.12 1.98 −3.49 ±0.50 
CS 1.20 −0.21 0.91 2.12 −3.56 ±0.99 
PB −0.56 0.20 0.81 2.04 −3.51 ±0.97 1.0 
BA −0.54 0.03 0.51 1.04 −3.51 ±0.98 

 
In the above Tables, c is given as deviation per mil, xo and yo as 
deviations in pixels, while k1 and k2 in true values. The symbols 
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CS, PB, BA stand, respectively, for calibration sphere, plane-ba-
sed calibration and bundle adjustment. In all cases, the standard 
error of the unit weight (σo) is also given. 
 
Generally, it is not quite possible to directly compare different 
results for the parameters of camera calibration, as in each case 
these are correlated to different quantities. Notwithstanding this 
fact, one could claim that the results of the developed algorithm 
compare indeed satisfactorily with both plane-based calibration 
and self-calibration, i.e. robust approaches resting on object-to-
image correspondences (it is noted, however, that the latter two 
methods yield here almost identical results, basically due to ob-
ject planarity and lack of tie points in self-calibration). Besides, 
only one set of noisy data has been introduced in each case, a 
fact implying that the presented results reflect the effects of the 
particular perturbations. Further tests are needed to establish the 
extent to which the method being studied is susceptible to noise. 
 
4.2 Real data 
 
For the application with real data, a set of 20 images (640×480) 
was used, drawn from the cited web site of Bouguet (Fig. 6). 
Calibration parameters were computed with all three methods. 
Table 4 presents the results for the parameters, along with their 
respective estimated precision; an exception is the aspect ratio, 
for which its deviation from unity (1−a) is presented. It must be 
noted that the specific plane-based algorithm used here does not 
explicitly compute the aspect ratio; besides, is uses a different 
model for radial distortion. Hence, these parameters have been 
transformed into the framework of the other two approaches. 
 

Figure 6. Nine of the images of Bouguet (2004) used here. 
 

Table 4. Results for the data of Bouguet (20 images) 
  c 

(pixel) 
1−a 
(‰) 

xo 
(pixel) 

yo 
(pixel) 

k1
 

(×107) 
k2 

(×1013)
σο 

(pixel)

CS 656.34 
±0.24 

−2.8 
±0.3 

302.34 
±0.12 

242.09 
±0.23 

−6.03 
±0.03 

7.70 
±0.25 ±0.12 

PB 657.35 
±0.34 −0.6 302.92 

±0.56 
242.98 
±0.60 −5.92 6.85 ±0.13 

BA 657.64 
±0.10 

−0.6 
±0.1 

301.48 
±0.17 

239.79 
±0.15 

−6.02 
±0.02 

7.12 
±0.15 ±0.09 

 
Here again, it is seen that the results of the studied approach are 
essentially comparable to those of the other two methods. How-
ever, certain differences are evident (regarding the aspect ratio, 
for instance, or the camera constant); furthermore, the algorithm 
faced here a clear difficulty to converge. Actually, this problem 
was attributed to a particular image (seen at the far bottom right 
in Fig. 6). This particular view is characterised by a very weak 
perspective in one direction. Indeed, its rotation about the verti-
cal Y axis is extremely small (φ = −0.58°). The consequence is 

that the vanishing point of the horizontal X direction tends to in-
finity (its x-coordinate is xVX ≈ 1.6×105). Although the algorithm 
proved to be indeed capable of handling even this unfavourable 
image geometry, exclusion of this particular image yielded the 
better results tabulated in the following Table 5. 
 

Table 5. Results for the data of Bouguet (19 images) 

 c 
(pixel)

1−a
(‰)

xo 
(pixel)

yo 
(pixel) 

k1
 

(×107) 
k2 

(×1013)
σο 

(pixel)

CS 657.49
 ±0.27 

−0.3
±0.4 

303.43
  ±0.13

241.31 
 ±0.23 

−6.05 
±0.03 

7.86 
±0.27 ±0.11 

PB 657.29
 ±0.34 −0.7 303.25

 ±0.56 
242.54 
  ±0.61 −5.94   7.01 ±0.12 

BA 657.59
 ±0.10 

−0.4
±0.1 

302.47
 ±0.17 

241.55 
±0.15 

−6.03 
±0.02 

  7.18 
±0.17 ±0.09 

 
However, this example confirms that images with one (or both) 
of the vanishing points close to infinity might indeed undermine 
the adjustment. Having first estimated the initial values, a basic 
measure would be to automatically omit any image exhibiting a 
vanishing point (or a rotation φ or ω) which exceeds (or, respec-
tively, is smaller than) a suitably selected threshold. 
 
 

5. CONCLUDING REMARKS 
 
Recently, the authors have reported on the photogrammetric ex-
ploitation of single uncalibrated images with one vanishing point 
for affine reconstruction (Grammatikopoulos et al., 2002), and 
on camera calibration using single images with three vanishing 
points (Grammatikopoulos et al., 2003). Here, a camera calibra-
tion algorithm is presented for independent single images with 
two vanishing points (in orthogonal directions). A direct geo-
metric treatment has shown that, for such images, the loci of the 
projection centres in the image systems are (semi)spheres, each 
defined by the respective pair of vanishing points. The equation 
of this ‘calibration sphere’ relates explicitly the interior orienta-
tion parameters with the four (inhomogeneous) vanishing point 
coordinates. Actually, this is a – surely more familiar to photo-
grammetrists – geometric (Euclidean) interpretation of the pro-
jective geometry approaches adopted in computer vision. 
 
Based on this, the implemented algorithm adjusts simultaneous-
ly all point observations on the two sets of concurring lines on 
each view. With ≥ 3 images, the outcome is estimations for ca-
mera constant, principal point location and radial lens distortion 
curve; for > 3 images, image aspect ratio can also be recovered. 
The algorithm has been tested with fictitious and real data. Al-
though further experimentation is required, these first results in-
dicate that – in terms of accuracy and precision – the presented 
method, which adjusts observations from all available images, 
compares very satisfactorily to both plane-based calibration and 
photogrammetric bundle adjustment. 
 
This aspect needs to be underlined, since the latter two robust 
approaches are bound to space-to-image and/or image-to-image 
correspondences. The developed method, on the contrary, pre-
serves all main advantages of a vanishing point based approach. 
Thus, there is no need for calibration objects or any prior metric 
information (points, lengths, analogies etc.). The mere existence 
of space lines in two orthogonal directions – a frequent appear-
ance in a man-made environment – suffices for the calibration 
process. Evidently, this also implies that independent images (in 
principle, with identical interior orientation) of totally different 
3D or planar scenes may well be used. 
 
It is clear that an error analysis is needed to study the effects of 
the number of images as well as of the camera rotations relative 
to the space system axes (resulting in the position of the vanish-
ing points on the image). The question of vanishing points tend-
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ing to infinity must also be handled. Besides, the noise of image 
points has to be further investigated, with extensive tests using 
different noisy data and with real scenes. 
 
A further future task would be to elaborate the approach into a 
semi-automatic or fully automatic process, by introducing tools 
for automatically detecting vanishing points (see, for instance, 
van den Heuvel, 1998; Rother, 2000). Finally, it is within the 
authors’ intentions to extend the geometric model in order to in-
corporate the full calibration matrix (namely, to include image 
skewness) and, in addition, to accommodate the cases where the 
two vanishing points pertain to space directions which are not 
orthogonal to each other. 
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