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ABSTRACT 
 
Single image techniques may be very useful for heritage documentation purposes, not only in the particular instances of damaged or 
destroyed objects but also as auxiliary means for a basic metric reconstruction. In the general case, single images have unknown in-
terior orientation, thus posing the fundamental question of camera calibration (as in several cases no ground control is available). To 
this end, the known – or assumed – geometry of imaged man-made objects may be exploited. Recovery of the three main elements of 
interior orientation, together with image attitude, requires the existence on the image of lines in three known non-coplanar directions, 
typically orthogonal to each other (from the lines, radial lens distortion might also be estimated). Several approaches have been re-
ported for the exploitation of this basic image geometry; however, the expected accuracy has not been adequately investigated. In this 
contribution, three alternative algorithms are presented, based: on the direct use of the three basic image vanishing points; on the use 
of image line parameters; and on the direct use of image point observations. The integration of radial distortion into the algorithms is 
also presented. The reported results are evaluated, and promising conclusions are drawn regarding the performance and limitations of 
such camera calibration methods, as compared to self-calibrating bundle adjustment techniques based on control points. 
 
 
 

1. INTRODUCTION 
 
Under certain circumstances photogrammetry is asked to handle 
documentation questions for cultural items partly or totally da-
maged. So, it happens that old (‘historic’) images can be the ex-
clusive source for metric information; these may well be single 
amateur photographs. Not taken for photogrammetric purposes, 
they usually lack control information or camera data. Fortunate-
ly enough, however, man-made objects usually contain straight 
lines, thus being suitable for methods of line photogrammetry. 
 
But single-image line photogrammetry is evidently not restricted 
to old images; its uses include very diverse tasks like vehicle or 
robot navigation and metric exploitation of surveillance cameras 
(topics extensively studied in the field of computer vision). In 
fact, what is more important is an understanding of the underly-
ing image geometry, common to all monoscopic techniques. For 
the purposes of this contribution, a single-image approach may 
be regarded as consisting of three, albeit not independent, steps: 
camera calibration; image orientation; object reconstruction. 
 
Regarding 1D measurements, one suitable vanishing point on an 
uncalibrated image may be sufficient (Grammatikopoulos et al., 
2002). For 2D objects, e.g. planar facades, two vanishing points 
of known angle permit to recover image rotations and the came-
ra constant, and hence rectification (Karras et al., 1993). But if 
the principal point cannot be ignored, rectification requires fur-
ther information (a length proportion). Regarding 3D structures, 
Gracie (1968) has derived all necessary equations for estimating 
interior orientation parameters and camera attitude in a configu-
ration with three vanishing points in orthogonal directions. Re-
sults have been reported with this approach by both Bräuer-Bur-
chardt & Voss (2001) and Petsa et al. (2001) regarding old pho-
tographs (the former also address cases where one of the vanish-
ing points is close to infinity by using appropriate length ratios). 
To the same effect, van den Heuvel (2001) adjusted line obser-
vations with constraints among lines for camera calibration. 
 
Unlike approaches founded on vanishing points, Petsa & Patias 
(1994) had presented an algorithm using image line parameters, 
estimated previously; these are subsequently adjusted to recover 

interior orientation and rotation matrix. This approach has been 
successfully applied to uncalibrated photographs of both exist-
ing buildings and a torn down theatre (Karras & Petsa, 1999). 
 
Here, the particular problem of camera calibration is addressed. 
Besides being a step towards the final goal of reconstruction, it 
constitutes a problem in its own right: How reliable are simple 
single-image calibration approaches, which do not rely on con-
ventional control information but, merely, on object geometry? 
Here, different formulations are discussed and evaluated against 
a rigorous multi-image bundle adjustment approach. 
 
In most instances, radial lens distortion is either neglected or is 
estimated beforehand (as in Bräuer-Burchardt & Voss, 2001) by 
one of the simple methods at hand (Karras & Mavromati, 2001). 
Here, radial distortion has also been introduced into the algo-
rithms to allow camera calibration in one single step. 
 
 

2. ALTERNATIVE FORMULATIONS 
 
2.1 Use of vanishing points 
 
As mentioned already, Gracie (1968) has given the formulae for 
determining the three interior orientation elements (camera con-
stant c and principal point xo, yo) and the three ω, ϕ, κ image ro-
tations from the vanishing points of three orthogonal directions, 
which provide the six necessary equations. Thus, the adjustment 
refers here to the estimation of vanishing points from individual 
point measurements xi, yi on converging image lines. The fitted 
lines are constrained to converge to the corresponding vanish-
ing point F(xF, yF) according to following observation equation: 
 

( )F Fi ix x y y t 0− − − =  (1)
 
According to line direction, the equation can be also formulated 
using slope t = ∆y/∆x with respect to the x-axis. Having estima-
ted vanishing point locations, subsequent determination of inte-
rior orientation elements and rotation matrix R is then straight-
forward. This is approach A. 
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In Eq. (1), radial symmetric lens distortion ∆r has been ignored. 
It can be introduced as follows: 
 

( )( )
( )( )

F

F

2 4i i o 1 2

2 4i i o 1 2

x x x k r k r x

y y y k r k r y t 0

− − + − −

 − − − + − = 
 (2)

 
In this case, all point observations are adjusted in one step, with 
common unknowns the two distortion coefficients (k1, k2). If it 
cannot be assumed that the principal point, about which distor-
tion is assumed to be radial-symmetric, is near the image centre, 
then a first solution without distortion is required to provide an 
adequate estimate for its location as regards distortion. Finally, 
let it be noted that the mean standard error of unit weight (σo) 
from the adjustments for the three vanishing points is a measure 
for the precision of the adjustment. 
 
2.2 Use of line elements 
 
In this case, the basic mathematical model, given in Petsa & Pa-
tias (1994), could be summarised as follows. Let G be an object 
line and ε the central projection plane of corresponding image 
line g. Further, let n be the normal vector of ε and δt = [L M N] 
the direction vector of the object line. If R denotes the matrix of 
image rotations, then 
 

t 0=n Rδ  (3)
 
is the condition for the orthogonality of the two vectors n and δ. 
This is equivalent to the parallelism of space line G (and, hence, 
of all object lines of the same direction) with projection plane ε 
(and, hence, all projection planes of object lines of direction δ). 
The vector n is a function of the three interior orientation para-
meters and image line elements. Regarding the latter, two alter-
native formulations are possible, giving rise to two different ap-
proaches. 
 
In the first case, it is line parameters that are considered as ob-
servations to be adjusted; in the other case, all individual point 
measurements on all image lines are treated as observations. 
 
Use of image line parameters as observations 
 
Here, as formulated in Petsa & Patias (1994), parameters a, b of 
the ‘intercept form’ of image lines 
 

yx 1 0
a b

+ + =  (4)

 
are assumed to be known after individual line fitting. Vector n 
is then a function of interior orientation and line parameters: 
 

[ ]t o ocb ca ab bx ay= − − + +n  (5)
 
Setting 
 

[ ]U V W=Rδ  (6)
 
and introducing Eqs. (5) and (6) into Eq. (3), finally results in 
 

( )o ocbU caV ab bx ay W 0+ − + + =  (7)

 
Every object line of known direction gives rise to one orthogo-
nality condition (7). Image lines are first fitted and subsequently 
carried into the adjustments as observations, weighted by means 
of their variance-covariance matrix. This is approach B. 

Thus, contrary to method A, here a two-step process is adopted. 
First, points are simply constrained on lines (lens distortion can 
be estimated along with the line parameters); next, line parame-
ters are introduced into the perspective equations (7) to recover 
the values of the involved parameters c, xo, yo and ω, ϕ, κ. This 
approach has been reformulated here in a more rigorous one-
step procedure, as follows. 
 
Use of image point measurements as observations 
 
In this case, an image line is expressed by each of its individual 
points and the line slope, assumed as t = ∆x/∆y (under certain 
circumstances the equivalent formulation with t = ∆y/∆x may 
be required). Thus, Eq. (5) takes the following form: 
 

( ) ( )t i o i oi c ct x x y y t=  − − − −  n  (8)
 
 
Accordingly, using again the quantities of Eq. (6), Eq. (3) final-
ly becomes: 
 

( ) ( )i o i ocU ctV x x y y t W 0− +  − − −  =   (9)
 
 
All measured image points xi, yi on all lines contribute one such 
condition to the adjustment. Hence, line fitting, camera calibra-
tion and image orientation are performed in one single step. The 
standard error of unit weight σo provides the precision estimate 
for the adjustment. This is approach C. 
 
The coefficients of radial lens distortion can also be incorpora-
ted into the solution, as follows: 
 

( ) ( ) ( )2 4i o i o 1 2cU ctV x x y y t 1 k r k r W 0− +  − − −  − − =  (10)

 
Using Eq. (10) for every observed image point, it is possible to 
estimate simultaneously the 8 involved parameters (c, xo, yo, k1, 
k2; ω, ϕ, κ) along with the slopes ti of all image lines. Of course, 
such an adjustment might be somewhat sensitive regarding esti-
mation of distortion, as it depends on length and distribution (as 
well as noise) of measured image line segments. Yet, in the per-
formed tests estimation of distortion was in accordance with the 
results from self-calibrating bundle adjustment (see 3.3 below). 
 
Concluding the presentation of mathematical models, it is noted 
that approaches A and C are indeed straightforward, as the raw 
observations (namely, points on image lines) are adjusted in one 
single step under the constraint of central projection (in case A, 
the unknowns are then directly extracted from an equal number 
of equations). In this sense, approach B differs since the raw ob-
servations are initially subject only to a linearity constraint, and 
line parameters thus obtained become in fact the ‘fictitious’ ob-
servations in the final adjustment step (hence, weighting is here 
indispensable). 
 
 

3. PRACTICAL INVESTIGATIONS 
 
In the first tests, objects with no ground control were used. The 
purpose was to check the performance of the algorithms and the 
agreement of their results. In the next series of investigations, 
the results for a known 3D object were evaluated in relation to a 
multi-image bundle adjustment. 
 
3.1 Results from the different single-image approaches 
 
The eight images used here, seen in Fig. 1, had been taken with 
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small format analogue cameras, using different lenses (35 mm; 
50 mm; the extremes of a 24–45 mm zoom lens). Since the en-
larged prints had been somewhat cropped, the interest focused 
here not on the actual values of interior orientation but rather on 
the closeness of results from the three calibration approaches (it 
is noted that the images were scanned in different resolutions). 
 

Figure 1. The images of the first test. 
 

Table1. Results of single image calibrations  
Image Method c (mm) xo (mm) yo (mm) σo 

1 
50 mm 

A 
C 
B 

 48.84 
 48.80 ± 0.16 
 48.84 ± 0.21 

 −1.34 
 −1.28 ± 0.15 
 −1.26 ± 0.20 

 −2.30 
 −2.32 ± 0.09
 −2.50 ± 0.12

   7.6 µm
   7.6 µm
   1.5 

2 
50 mm 

A 
C 
B 

 48.89 
 48.89 ± 0.13 
 48.69 ± 0.20 

   0.63 
   0.66 ± 0.26 
   0.77 ± 0.36 

 −2.06 
 −2.08 ± 0.12
 −2.08 ± 0.26

   7.1 µm
   7.0 µm
   1.9 

3 
35 mm 

A 
C 
B 

 35.16 
 35.16 ± 0.05 
 35.13 ± 0.13 

   0.63 
   0.63 ± 0.06 
   0.52 ± 0.20 

 −1.31 
 −1.32 ± 0.05
 −1.33 ± 0.12

   8.8 µm
  9.1 µm
   2.9 

4 
35 mm 

A 
C 
B 

 34.66 
 34.66 ± 0.05 
 34.63 ± 0.09 

   0.56 
   0.56 ± 0.06 
   0.56 ± 0.10 

 −1.11 
 −1.12 ± 0.05
 −1.21 ± 0.09

   9.4 µm
   9.4 µm
   2.6 

5 
35 mm 

A 
C 
B 

 36.05 
 36.05 ± 0.12 
 36.16 ± 0.27 

 −1.30 
 −1.24 ± 0.26 
 −1.76 ± 0.58 

   0.62 
   0.52 ± 0.15
   0.75 ± 0.40

 17.4 µm
 17.6 µm
   3.3 

6 
35 mm 

A 
C 
B 

 35.69 
 35.69 ± 0.12 
 36.10 ± 0.23 

 −0.08 
 −0.20 ± 0.20 
 −0.14 ± 0.41 

   1.03 
   1.06 ± 0.16
   1.22 ± 0.28

 16.3 µm
 16.5 µm
   3.2 

7 
45 mm 

A 
C 
B 

 43.42 
 43.42 ± 0.14 
 43.92 ± 0.55 

 −0.12 
 −0.14 ± 0.26 
    0.61 ± 0.81 

   1.28 
   1.19 ± 0.13
   1.29 ± 0.46

 17.7 µm
 16.9 µm
   5.8 

8 
24 mm 

A 
C 
B 

 24.46 
 24.49 ± 0.07 
 24.40 ± 0.17 

 −0.20 
 −0.19 ± 0.12 
    0.07 ± 0.24 

   1.82 
   1.79 ± 0.07
   1.85 ± 0.14

 19.5 µm
 19.7 µm
   2.6 

Results from all three approaches, whereby radial distortion has 
been ignored, are presented in the above Table 1. It is clear that 
approaches A and C give values for calibration parameters pra-
ctically identical; the same holds true for the precision estimates 
σo (regarding approach B, it is noted that σo is dimensionless as 
the observations are actually weighted). Thus, it appears that in-
deed these two methods are essentially equivalent. Approach B, 
on the other hand, gives similar results for the first 4 images, for 
which small σo values are present; yet, significant deviations do 
exist in some of the remaining images (for instance, differences 
in c reaching 1.1%), where σo values are large. This could be an 
indication that, since line fitting is performed as a separate step, 
this method might be more sensitive to ‘noise’. 
 
The last remark to be made here is that the precision of the un-
knowns, too, appears to be considerably smaller in approach B 
than in C. It is noted that in method A, where the unknowns are 
finally found with no redundancy, precision estimations for the 
camera parameters could also be calculated as an error propaga-
tion of vanishing point standard errors, emerging from the line 
fitting adjustment using Eq. (1), to the values of interior orienta-
tion parameters. 
 
3.2 Comparison of single-image and multi-image 
approaches  
 
In this case, a regular grid was used to provide ample control. A 
number of toy items had been placed on it to create a 3D object, 
but also to provide vertical control. This structure has then been 
recorded ten times using a KODAK DCS420 camera (1524×1012 
pixels of size 9.2 µm) and a 28 mm lens. Thus, the performance 
of single-image approaches was assessed under rather unfavour-
able conditions due to the weak perspective of the narrow-angle 
lens. 
 
Six images (shown in Fig. 2) were selected for the single-image 
tests, namely those whose converging lines did not intersect at 
exceedingly small angles in any of the three vanishing points. 
These same six images were used in the bundle adjustments. 
 

Figure 2. The images of the second test. 
 
A self-calibrating bundle solution was carried out (ignoring dis-
tortion) with all six images, based on a total of 25 control points 
(21 full and 4 vertical) and 60 tie points. Regarding the single-
image calibrations, 3 image lines were measured in the grid X,Y 
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directions; more lines (7−13) were measured in the direction of 
depth, to compensate for short line segments. After solution, the 
values of interior orientation parameters from each approach for 
each image were consecutively introduced into the bundle of 
six images as fixed camera parameters. 
 
For all 18 bundle solutions, deviations dX, dY, dZ of all estima-
ted tie point coordinates from their known values were calcula-
ted, to provide the mean absolute deviations d for all solutions. 
This allows assessing the effectiveness of single-image pre-cali-
bration using lines. The results are seen in Table 2, in which the 
first row gives the outcome of self-calibration. 
 

Table 2. Calibration results from single images 
and from bundle adjustment using 6 images 

d: mean absolute deviation of tie points from bundle adjustments 
using the calibration results from single images as fixed 

Image Method c (mm) xo (mm) yo (mm) σo d (mm)
 Bundle 30.06 −0.18 −0.07 4.4 µm 0.09 

1 
A 
C 
B 

30.53 
30.55 
30.37 

−0.54 
−0.60 
−0.12 

  0.05 
  0.00 
  0.04 

6.4 µm
5.7 µm
 3.2 

0.09 
0.10 
0.09 

2 
A 
C 
B 

30.67 
30.67 
30.81 

−0.04 
−0.04 
  0.00 

  0.36 
  0.37 
  0.48 

6.1 µm
6.3 µm
 3.2 

0.10 
0.10 
0.11 

3 
A 
C 
B 

30.68 
30.68 
30.82 

  0.43 
  0.42 
  0.46 

  0.61 
  0.62 
  0.81 

5.4 µm
5.3 µm
 3.1 

0.14 
0.14 
0.15 

4 
A 
C 
B 

30.79 
30.71 
31.91 

−0.23 
−0.19 
−0.77 

  0.19 
  0.15 
  0.39 

4.0 µm
3.8 µm
 3.4 

0.09 
0.09 
0.17 

5 
A 
C 
B 

30.14 
29.99 
30.63 

  0.20 
  0.28 
  0.05 

  0.06 
−0.03 
  0.26 

6.2 µm
5.2 µm
 3.5 

0.11 
0.12 
0.10 

6 
A 
C 
B 

30.72 
30.74 
29.76 

  0.80 
  0.81 
  0.26 

−0.38 
−0.38 
−0.10 

6.0 µm
5.2 µm
 4.9 

0.17 
0.17 
0.12 

 
Here again, approaches A and C yield very similar results. It is 
also seen that all approaches display considerable deviations re-
garding the camera constant, whose values consistently exceed 
those of the bundle approach. The values for the principal point, 
too, show large fluctuations. However, it is basically not advis-
able to directly compare parameter values from adjustments dif-
fering in input data and/or algorithm. Generally, in bundle solu-
tions the camera parameter values are tightly correlated with the 
exterior orientation parameters of several images (for instance, 
the adjustments of the 6 images and of all 10 images gave a dif-
ference of ∆c = 0.15 mm for the camera constant). 
 
Thus, object reconstruction with the different camera parameter 
values would probably be more reliable for assessing the diffe-
rent approaches. In Table 2 it is clearly seen that, for the camera 
parameter values obtained from individual images with all three 
approaches, the mean absolute differences d (representing accu-
racy of the intersected object points) are at most about 1.6 times 
larger than those from the self-calibrating bundle solution. One 
exception exists in each case (image 6 for approaches A, C and 
image 4 for B), with d still being less than 2 times larger. 
 
It may be concluded that, in the present case, single-image ca-
mera calibration from linear features results in at most doubling 
inaccuracy as compared to self-calibration. This, of course, is 
an overall assessment, since approach B appears to behave 
differently regarding the individual images. 
 

3.3 Including radial lens distortion in the adjustments   
 
In the preceding tests, lens distortion ∆r has been ignored. Now, 
it has been included among the unknowns, using Eqs. (2) and 
(10) for approaches A and C, respectively. Further, ∆r has also 
been estimated in a bundle solution using all images. Again, the 
values for the camera parameters of each image obtained from 
both methods have been introduced, successively, as fixed data 
on camera geometry into the bundle adjustment. 
 
The results for distortion, obtained with approach A, are seen in 
Fig. 3 (distortion curves from approach C are almost identical). 
It is clear that here single-image solutions provide a satisfactory 
estimation of radial lens distortion. 
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Figure 3. Calibrated distortion curves from bundle solution 
(dark line) and from vanishing point estimation using Eq. (2). 

 
The results for camera calibration and object reconstruction are 
shown in Table 3. In comparison to Table 2, the precision of ad-
justments (σo values) has improved considerably thanks to the 
correction of distortion; the same holds true for the mean abso-
lute differences (d) of tie points. 
 

Table 3. Calibration results from single images and bundle 
adjustment with estimation of radial distortion 

Image Method c (mm) xo (mm) yo (mm) σo d (mm)
 Bundle 30.06 −0.06 −0.07 3.5 µm 0.05 

1 A 
C 

30.47 
30.60 

  0.71 
  1.58 

  0.07 
  0.03 

4.9 µm
4.9 µm

0.09 
0.11 

2 A 
C 

30.62 
30.67 

  0.19 
  0.26 

  0.33 
  0.45 

5.3 µm
5.3 µm

0.06 
0.07 

3 A 
C 

30.38 
30.52 

−0.19 
−0.27 

  0.31 
  0.56 

4.4 µm
4.4 µm

0.06 
0.07 

7 A 
C 

30.76 
30.79 

  0.32 
  0.42 

  0.22 
  0.26 

3.4 µm
3.4 µm

0.07 
0.02 

8 A 
C 

30.11 
30.11 

−0.10 
−0.13 

  0.04 
  0.12 

4.8 µm
4.8 µm

0.05 
0.05 

11 A 
C 

30.54 
30.72 

−0.60 
−0.87 

−0.32 
−0.42 

4.9 µm
4.9 µm

0.09 
0.12 

 
Otherwise, similar remarks as before may be made. Differences 
in camera constant remain large, and so does the scatter of the 
principal point coordinates. Yet, object point errors from single-
image approaches hardly exceed the corresponding value from 
bundle solution by a factor of about 2. 
 
 

4. DISCUSSION 
 
Here, mathematical models for single image calibration, relying 
on measurements of straight lines in three orthogonal directions, 
have been presented and assessed against bundle adjustment. As 
it is, generally, rather unwise to directly compare parameter 
data from different sources, evaluation has relied on the use of 
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camera information derived from lines as fixed values in bundle 
solutions. Results indicate that, at least in this case, such 
techniques lead to ‘reasonable’ errors, about twice as large as 
those of a rigorous solution. In this sense, they could be used 
when bundle solutions are impossible or impracticable. Lens 
distortion, too, can apparently be estimated satisfactorily by 
means of such one-step single-image methods. 
 
Of course, a more conclusive evaluation requires further 
investigations with various lenses, notably wide-angle, but also 
regarding the limits of application of these approaches with 
respect to length and distribution of image line segments, noise 
and image rotations. The presented results, nonetheless, indicate 
in practical terms that these approaches do have the potential 
for camera calibration and, hence, the next steps of object re-
construction. 
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