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Defining pixel correspondences among images is a fundamental process in fully automating image-based
3D reconstruction. In this contribution, we show that an adaptive local stereo-method of high computa-
tional efficiency may provide accurate 3D reconstructions under various scenarios, or even outperform
global optimizations. We demonstrate that census matching cost on image gradients is more robust,
and we exponentially combine it with the absolute difference in colour and in principal image deriva-
tives. An aggregated cost volume is computed by linearly expanded cross skeleton support regions. A
novel consideration is the smoothing of the cost volume via a modified 3D Gaussian kernel, which is geo-
metrically constrained; this offers 3D support to cost computation in order to relax the inherent assump-
tion of ‘‘fronto-parallelism’’ in local methods. The above steps are integrated into a hierarchical scheme,
which exploits adaptive windows. Hence, failures around surface discontinuities, typical in hierarchical
matching, are addressed. Extensive results are presented for datasets from popular benchmarks as well
as for aerial and high-resolution close-range images.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Generation of dense 3D information is a fundamental task in
most applications in the fields of photogrammetry and computer
vision (3D reconstruction, DSM production, object detection and
recognition, automatic navigation, novel view synthesis,
augmented reality). Methods for acquiring 3D information can be
distinguished as passive and active. Image-based approaches
(passive) are lately proven to be competitive to laser and optical
scanners (active) in terms of accuracy, while exhibiting a clear
advantage as regards cost and flexibility. Several theoretical
alternatives exist for exploiting images in producing 3D informa-
tion (shape from X). A core procedure is image matching, i.e. essen-
tially the determination of correspondences among pixels. These
approaches may be seen as consisting of two processes: establish-
ment of sparse correspondences among images for camera calibra-
tion/orientation; and dense matching for 3D surface reconstruction.
Stereo-matching algorithms for dense reconstruction, as that
described in this paper, mostly exploit the epipolar constraint,
hence they typically operate on rectified images to produce a
disparity map (map ping of disparity values for every pixel of the
reference image).

A significant number of efficient algorithms have been proposed
for creating accurate disparity maps from single stereo-pairs. The
effectiveness of such algorithms has been extensively discussed
in several surveys (Dhond and Aggarwal, 1989; Banks and Corke,
2001; Scharstein and Szeliski, 2002; Brown et al., 2003). Scharstein
and Szeliski (2002) have categorized algorithms by splitting them
into four main components: matching cost computation, support
aggregation, disparity optimization (local and global) and disparity
refinement; publications addressing these components will be
referred to below. Gong et al. (2007); Tombari et al. (2008) discuss
the question of support region formation, while Hirschmüller and
Scharstein (2009) evaluate the cost function itself under different
optimization schemes. Enlightening comments are also found in
Dhond and Aggarwal (1989); Brown et al. (2003). Wang et al.
(2006); Nalpantidis et al. (2008) provide respective surveys
focusing on criteria for hardware implementation and for real-time
performance, while Tombari et al. (2010) have discussed the
capabilities of fast stereo methods with low memory footprint.
Evidently, difficulties exist in assessing stereo-methods due to
diverging criteria set by different applications, as methods serving
one purpose sometimes fail when the scenario changes.
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In more detail, in matching cost computation a dissimilarity mea-
sure is attributed to each pixel for every value in the disparity
range. A wide spectrum of such matching measures has been pro-
posed over the years. Most common among them are the absolute
difference of pixel intensities, their squared difference, their nor-
malized cross correlation, as well as measures relying on input
images transformed by filters such as the median, the mean, the
LoG, or more sophisticated tools like bilateral filtering (Tomasi
and Manduchi, 1998). Non-parametric image transformations,
such as rank and census (Zabih and Woodfill, 1994), produce robust
results based on relationships of pixels with their neighbourhood.
Birchfield and Tomasi (1998) have proposed a dissimilarity mea-
sure to cope with differences in image sampling. Recently, the mu-
tual information approach has been proposed for effectively
handling radiometric differences (Hirschmüller, 2008); on the
other hand, pixel-wise descriptor measures, like DAISY (Tola
et al., 2008) or SIFT variations (e.g. Strecha et al., 2011), have
yielded promising results in global formulations for wide-base
stereo.

Cost computed per pixel is supported by a neighbourhood
around pixels in the cost aggregation step. There exist three main
approaches through which this question may be addressed: use
of support weights, support regions of arbitrary shapes and varia-
tions of rectangular windows. Methods based on support weights
make use of a window fixed in size and shape, and adjust the
weights attributed to each neighbouring pixel. Weights can be cal-
culated according to colour similarity and geo metric proximity
(Yoon and Kweon, 2006) or additional criteria (Xu et al., 2002).
Support regions of arbitrary shape re present an attempt to estab-
lish an optimal window shape and size. Theory from the field of
image filtering has contributed the idea of shape-adaptive win-
dows based on separate circular sectors across multiple directions
around a pixel (Foi et al., 2007; Lu et al., 2008). Cross-based win-
dows have been proposed by Zhang et al. (2009). Rectangular win-
dows, and their variations for improving efficiency, are the most
obvious choice thanks to their simplicity of implementation. Shift-
able windows or windows anchored at pixels other than the cen-
tral one (Kang et al., 1995; Fusiello et al., 1997; Bobick and
Intille, 1999), as well as multiple windows relying on local varia-
tion of intensity and disparity (Kanade and Okutomi, 1994; Veks-
ler, 2003), have also been proposed.

Disparity estimation in local (region-based) methods is usually
performed in the winner-takes-all (WTA) mode, i.e. the disparity
with the lowest aggregated cost is chosen. Global methods, on
the other hand, perform disparity optimization on an energy func-
tion defined over all image pixels by simultaneously imposing a
smoothness constraint. Regarding the latter, various approaches
have been implemented based on partial differential equations
(Faugeras and Keriven, 1998; Strecha et al., 2004; Ranftl et al.,
2012), dynamic programming (Veksler, 2005), simulated annealing
(Barnard, 1986), belief propagation (Sun et al., 2003; Felzenszwalb
and Huttenlocher, 2004) and graph-cuts (Kolmogorov and Zabih,
2001; Boykov et al., 2001).

The last step, disparity refinement, aims at elaborating the dis-
parity map. This can include correcting inaccurate disparity values
and handling occlusion areas (Bobick and Intille, 1999). A common
approach is to enforce constraints which are not explicitly imple-
mented in the disparity optimization phase (Marr and Poggio,
1976; Yuille and Poggio, 1984; Brown et al., 2003). Typically, a
sub-pixel estimation step is taken to increase the resolution of
the disparity map, as most algorithms search in a discrete disparity
space. This includes adjusting a curve to pixel cost for each dispar-
ity (Hirschmüller, 2008) and sub-pixel interpolation to disparity
values (e.g. Yang et al., 2009 use a mean filter). In the past, Tian
and Huhns (1986) had proposed intensity interpolation, a differen-
tial method and phase correlation. For more details on the variety
of stereo-matching algorithms one may refer to dedicated on-line
evaluation platforms, such as the Middlebury evaluation platform
(Section 8.1) and the KITTI benchmark site (Section 8.5), where
developments and new trends in the field are being continuously
reported.

In this publication we address a number of open questions
which, in principle, regard the performance of both local and global
stereo methods. The successful estimation of disparities around
discontinuities, which denote surface boundaries in 3D space,
and within poorly textured areas is always a challenge. Regarding
the latter case, sparse matching methods tend to fill untextured
areas through interpolation, but it is of course preferable to obtain
actual disparities. Furthermore, typical deficiencies to be dealt
with are the ‘‘fronto-parallel effect’’ (flat surfaces in 3D space par-
allel to the image plane are favoured) in highly inclined surfaces
and the quantization of disparities in discrete methods (e.g. MRF
models, most local and semi-global approaches). At the same time,
we wish to retain the computational efficiency required for real-
time (and lately on-line) processes or high-resolution images.
Our effort also aims at defining parameter-stable models, which
is not a trivial task; most global methods involve handling a variety
of parameters (i.e. the smoothness term is highly dependent on
parameters defining the function, and hence on the image sce-
nario), but also many local methods are sensitive to their empiri-
cally determined parameters.

Local methods are, typically, considered to be more straightfor-
ward and simple, and hence adequately fast for real-time applica-
tions, but of lower accuracy. On the other hand, methods based on
a global optimization framework use elaborate models to describe
the matching process; this often results in disparity maps of high
quality, but at the cost of a computational load which may be
restrictive for real-time tasks or large data manipulation. Notwith-
standing this general remark, research work demonstrated in ma-
jor evaluation platforms indicates that the limitations of each
category are partially losing in significance: theoretical improve-
ments and hardware upgrade make fast global implementations
possible; at the same time, local methods achieve disparity maps
of high accuracy, superior to several global methods, mainly via
elaborate cost aggregation. Obviously, the increase of computa-
tional resources in personal computers, and even small dedicated
processors, have made the exploitation of highly elaborate and
demanding algorithms feasible, but at the same time image acqui-
sition hardware keeps evolving and offering images with high spa-
tial and radiometric resolution. Thus, algorithms offering lower
complexity are still required in certain applications, while local ap-
proaches will probably continue to be easier to implement regard-
less of hardware.

Furthermore, manipulating large data, real-time and recent on-
line applications, all require speed. This objective is partially
served through hardware implementation. A wide range of such
implementations can be found in surveys mentioned later in the
text. Local methods have an inherent ability to bundle with com-
mercial (e.g. in FPGAs) and special purpose hardware, as well as
with their existing supportive software, e.g. CUDA for Nvidia GPUs.
On the other hand, stereo matching methods based on global opti-
mization algorithms are in general difficult to implement on hard-
ware. Their complex and usually iterative nature makes defining
and running of parallel processes unappealing, i.e. parallelism is
difficult in MRF because of variable connectivity. This, of course,
is not to suggest that fast and accurate global algorithms do not ex-
ist, but constructing them needs more time and effort.

Bearing in mind the above considerations, this work presents a
hierarchical matching scheme based on local patch-based match-
ing in a way that the previously discussed requirements are met,
while keeping the complexity of the algorithm substantially low.
We have chosen to extend the cross-based support regions
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aggregation method, because this allows forming highly adaptive
irregular shapes; it is independent of the cost function; and it
degenerates from area to single dimensional aggregation in order
to maximize computational efficiency. The presented matching
framework not only scores high at the Middlebury tests, but also
performs satisfactorily for high resolution images and outdoor
scenes. It is evaluated with applications which demand high accu-
racy, e.g. ortho-maps from aerial imagery and small objects of
archaeological interest with rich detail.

Thus, this contribution presents a stereo-matching algorithm
which is based on the combination of existing state-of-the-art
techniques and novel considerations. Novel aspects include the
use of a linear threshold in the cross-window formulation; the
use of census transformation on image principal gradients, which
appears to yield enhanced sub-pixel accuracy; and the combina-
tion of multiple matching measures in the final cost. We also pres-
ent a geometrically constrained smoothing process for the cost
volume to provide 3D support, in order to improve the 2D aggre-
gated cost as well as weaken the ‘‘fronto-parallel effect’’ and the ef-
fect of disparity quantization in scenes acquired with strong
inclination. The above successive steps are integrated into an intu-
itive hierarchical scheme which responds to known problems
around discontinuities. Finally, a robust refinement procedure for
the disparity map is proposed as a combination of already known
actions. Results for a wide range of imaged scenes are shown to
evaluate the competitive performance of the algorithm in major
bench marking platforms and high-resolution real-life scenes. It
is noted that the reported matching scheme has produced robust
results without special tuning for each particular dataset, which
is rather uncommon in matching methods. We also wish to dem-
onstrate here that a local method can offer quality reconstructions
for high resolution images, whereas the common idea is to select
local methods simply for speed. Certain aspects of this contribution
have been presented in previous publications (Stentoumis et al.,
2012, 2013).

Section 2 describes the proposed matching measures and their
integration in a robust cost function. Section 3 refers to the forma-
tion of the adaptive support regions, which are based on combined
cross-skeletons of the reference and matching images. After Sec-
tion 4, which briefly discusses the disparity image representation,
in Section 5 a three-dimensional smoothing process for the cost
function is introduced, based on geometric constraints, to establish
3D local support for non-frontoparallel surfaces. The aforemen-
tioned steps are integrated into a hierarchical scheme (Section 6),
and the estimated disparity map is refined through a series of
post-processing steps (Section 7). Section 8 reports results from
various scenes, including images from major bench marking plat-
forms as well as aerial and close range high resolution images, to
evaluate the performance of the algorithm. Finally, conclusions
and a discussion follow in Section 9.
2. Matching/cost functions

2.1. Census on intensity principal derivatives

Census (Tc) is a widely used non-parametric image transforma-
tion (Zabih and Woodfill, 1994). For a support neighbourhood
N(m � n) of pixel p, a map of neighbouring pixels with intensities
less than that of p is formed. As a result, a binary vector Tc of length
m � n is assigned to each pixel. In case m � n < 255, a 255 bit string
can store the descriptive vector of each pixel. Census transforma-
tion Tc depends on how a pixel relates to its surroundings within
the image patch. It is hence robust against changes in brightness/
contrast which do not modify the ordering of intensity values.
Moreover, in this binary approach the actual values of individual
pixel intensities do not affect the overall measure, but only a spe-
cific bit of the binary descriptor of p. This makes Tc robust against
individual outliers around discontinuities and in cases of noisy
pixels.

Unlike usual approaches, the transformation is performed here
not on grey-scale image intensity function I but on its principal
derivatives oI/ox, oI/oy. Image derivatives are related to character-
istic structural image features (points, edges) and are, of course,
widely used as a contributing source of information in matching,
e.g. in gradient-based methods in global optimization formula-
tions, feature-based methods and local stereo (Scharstein, 1994;
Brown et al., 2003; Klaus et al., 2006). Derivatives are helpful in
treating constant bias in pixel values. The present approach pro-
vides an extended binary vector, whereby if q is a neighbour of p:

TcðpÞ ¼ �
p2 @I

@x;
@I
@yf g
�

q2Np

cðp;qÞ; cðp;qÞ ¼
0; @IðpÞ 6 @IðqÞ
1; @IðpÞ > @IðqÞ

� �
ð1Þ

which strengthens the positive aspects of the original transforma-
tion. In Eq. (1) � denotes the act of concatenation, following the ori-
ginal definition of Tc, and oI(p) represents the image gradient in the
x or y directions. The direct introduction of the gradients in two im-
age directions into the binary vector doubles the size of the pro-
duced vector Tc, thus exploiting the representational potential of
image gradients. Finally, the matching cost Ccensus between a pixel
p of the reference image and its corresponding pixel p0 in the
matching image is calculated as the Hamming distance, which repre-
sents the number of unequal elements in the two binary vectors.
This is applied for all potential disparity values dp (p0 = p + (dp,0)T).

The performance of the proposed census matching function on
the Tsukuba stereo-pair of the Middlebury evaluation platform
(http://vision.middlebury.edu/stereo/) is presented in Fig. 1 (left),
which also shows on the right the improvement of the disparity
map for the Teddy pair. For comparison, in Fig. 1 the disparity maps
derived by matching with the original census transformation are
also seen.

Extensive tests were performed in order to evaluate the effect of
applying census on gradients compared to conventional census
cost on intensity, without using the rest of the matching steps.
Table 1 presents the improvement (+) or deterioration (of disparity
maps in various available datasets, namely the typical 4-pair data-
set and the new 2006 dataset (Hirschmüller and Scharstein, 2007)
of Middlebury, and the KITTI dataset (Section 8.5)) for non-
occluded pixels (nonocc) and the whole image (all) after the
aggregation step (see Section 3).

Although the large sub-pixel improvement in the typical
Middlebury 4 pair dataset can be attributed to the artificial
Tsukuba stereo pair, there is a certain improvement in most pairs
when using census on gradients. A more thorough inspection of
the obtained disparity maps has revealed that results deteriorate
in texture-less regions (e.g. white wall and shiny plastic surface
in the Mid and Plastic stereo-pairs, respectively), while they signif-
icantly improve in highly textured areas (e.g. periodic table [Bowl-
ing and Teddy pairs], textile [Cloth] and map [Baby] background).
For the purposes of stereo matching, census transformation based
on image gradients appears to be less sensitive to radio metric dif-
ferences and repetitive patterns, while the discriminative capabil-
ity of the binary descriptor increases, leading to results of higher
accuracy. The above results should be further investigated to be
theoretically illuminated. The recent work of Hafner et al. (2013)
interprets the functionality of census transformation by transfer-
ring the discrete binary vector to continuous space; census effi-
ciency is generally superior when compared, using a variational
scheme, against gradient constancy assumption for the purposes
of optical flow. Such a reinterpretation of a binary descriptor could
be used in our case. Finally, Vogel et al. (2013) offer more insights

http://vision.middlebury.edu/stereo/


Fig. 1. Examples of disparity maps for the Tsukuba and Teddy stereo pairs obtained via the default census transformation (first and third image) and census on gradients
(second and fourth image) after the aggregation step. Indicated are examples for areas of improvement.

Table 1
Percentage of change in disparity map using census on gradient.

1 px Threshold 0.75 px Threshold 3 px Threshold

Nonocc All Nonocc All Nonocc All

Middlebury 4 pairs +1.32 +1.24 +6.43 +6.27
Middlebury 2006 +0.63 +0.90 +0.78 +1.05
KITTI 0.00 �0.01
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regarding the relation between census, centralized absolute differ-
ences and gradient constancy under a variational scheme.
2.2. Absolute difference on image colour

The absolute difference on colour channels (ADc), or on inten-
sity, is a simple and easily implementable measure, widely used
in matching (L1 correlation). Although sensitive to radiometric dif-
ferences, it has been proven as an effective measure when com-
bined with flexible aggregation areas and involving combination
of co lour layers. The cost term CADc is defined as the average AD
value of all three channels:
CADcðp;dÞ ¼
1
3

X
i

Iref
i ðpÞ � Imat

i ðpþ ðd; 0Þ
TÞ

��� ���;8i 2 fr; g; bg ð2Þ

This turns out to improve results compared to matching on sep-
arate channels or grey-scale (a partial form of Eq. (2) is used when
only grey-scale images exist). Truncation is common for eliminat-
ing spikes from the cost function. As defined here, the measure in-
cludes no truncation threshold on the colour difference range,
since such a precaution is incorporated in the cost fusion
(Section 2.4).
2.3. Absolute difference on image principal gradients

Here, the derivatives of image intensity in the two principal
directions are extracted, and the sum of absolute differences of
each derivative value in the x and y directions is used as a cost
measure. The use of directional derivatives separately, i.e. before
summing them up to the single measure ADg (Eq. (3)), introduces
the directional information for each derivative into the cost
measure:
CADgðp;dÞ ¼
X
x;y

rIref ðpÞ � rImat pþ ðd;0ÞT
� ���� ��� ð3Þ

A mild Gaussian filter (size 3 � 3, r = 0.5) is applied on the grey-
scale images before calculating partial derivatives for reducing
noise and for smoothing around image edges.
2.4. Total matching cost

The final matching cost C is derived by merging the three differ-
ent costs: census transformation on image gradients (expressed
through the Hamming distance), absolute difference in colour (or
intensity) values and absolute difference on principal image gradi-
ents. A robust exponential function (Yoon and Kweon, 2006; Mei
et al., 2011), which resembles a Laplacian kernel, has been pre-
ferred for cost combination:

Cðp; dÞ ¼ 1� exp �Ccensusðp;dÞ
kc

� �
þ 1� exp �CADcðp;dÞ

kADc

� �

þ 1� exp �CADgðp;dÞ
kADg

� �
ð4Þ

When compared to a linear combination of individual cost mea-
sures, function C has the advantage of truncating costs. By smooth-
ing the original cost functions, this truncation prevents the final
cost from being contaminated by large penalties due to outlying
individual cost values. This function takes values in the field
[0,1) for C P 0. The values of the three costs Ccensus, CADc and CADg

are thus scaled in the same value field. The values of each cost
should be normalized by k to ensure equal contribution to the final
cost, or tuned differently to accordingly adjust their impact on cost.
Tests performed on the Middlebury dataset for stereo-matching
are presented in Figs. 2 and 3.
3. Cost aggregation

Local approaches of stereo-matching are based on the definition
of pixel neighbourhood. It is assumed that pixels within this neigh-
bourhood share the same disparity; fronto-parallel surfaces are
thus favoured. Foundation of adaptive approaches is the fact that
pixels within a support region ought to have similar colours and
are expected to decrease in coherence with their distance from
the reference pixel in image space.

3.1. Support region formation

Here, a modification of the cross-based support region approach
is used (Stentoumis et al., 2012). The construction of such cross-
based support regions is achieved by expanding around each pixel



Fig. 2. Comparison of different matching cost functions for the four Middlebury stereo pairs (Tsukuba, Venus, Teddy, Cones). Disparity maps are presented for the individual
and the overall matching functions after the aggregation step. From top to bottom: left image, proposed modified census transformation, AD in image channels, AD in
principal images gradients, combined cost. The lowest row presents the reference disparity maps. The refinement steps described at Section 7 have not been used here, in
order to illustrate individual results and the improvement achieved by fusing the three costs.
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p a cross-shaped skeleton to create four segments (skþHz, sk�Hz, skþV ,
sk�V ) defining the corresponding sets of pixels H(p) and V(p) in
the horizontal and vertical directions, as seen in Fig. 4 (Zhang
et al., 2009; Mei et al., 2011).

Mei et al. (2011) have proposed two thresholds for colour
similarity and two further thresholds for spatial closeness. In our
approach, a linear threshold is imposed on window expansion:

sðlqÞ ¼ �
smax

Lmax
� lq þ smax ð5Þ
This linear threshold in colour similarity involves the maximum
semi-dimension Lmax of the window size, the maximum colour dis-
similarity smax between pixels p and q, and the spatial closeness lq
(Fig. 5). This, next to producing somewhat better results for the
Middlebury datasets, renders two of the manually given input vari-
ables redundant; at the same time, thresholding of colour differ-
ence s according to spatial closeness lq from the skeleton
becomes smoother. The difference s between successive pixels is
also checked after Mei et al. (2011). Typical support regions gener-
ated according to the above considerations are presented in Fig. 6.



Fig. 3. Visualised performance of cost functions (in % of erroneous disparities) by
comparing different cost combinations against true image disparities. The charts
correspond, from top to bottom, to comparisons against non occluded pixels, all
image pixels and areas near discontinuities. A: extended census, B: AD on colour, C:
AD on gradients, D: exponential combination of previous costs, E: extended census
plus AD on colour, F: extended census plus AD on gradient, and G: AD on colour plus
AD on gradient.

Fig. 4. Expansion of the cross-based support region S(p) driven by the skeleton of
each pixel. The skeleton pixels for V(p) and H(p) sets are calculated only once per
pixel. When pixel q belongs to V(p), the corresponding horizontal arm H(q) is added
to S(p). S(p) consists of the union of H(q) for all pixels q which participate in V(p).
[After Zhang et al. (2009)].

Fig. 5. Threshold s(lq) imposed on colour difference between pixels p and q is
linearly reduced (red curve) as q approaches the limit of maximum window size.
The green lines show the form of the two thresholds originally proposed by Mei
et al. (2011) for handling extended texture-less image areas. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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The determined cross-window can be based either solely on the
left (reference) image or also generated on the right (matching) im-
age as well, hence S depends also on d. This second case of
combined windows involves the intersection of the two cross win-
dows (S(p,d) = Sref(x,y)\Smat(x + d,y). Results from combined win-
dows are expected to be more robust, since the projective
distortions and radiometric differences between patches on the
reference and matching images are taken into account.

Generally, a [3 � 3] median filter is applied for cross-skeleton
determination. Moreover, the minimum length of all cross-seg-
ments is 1 pixel to ensure a minimum support region S of 9 pixels.

3.2. Aggregation

The cost aggregation step of the algorithm is computationally
expensive, since support regions are variable for each pixel, but it
involves repetitions of summations. When the support neighbour-
hood has a rectangular shape of constant size, the aggregation of
pixel-wise costs can be efficiently performed by convolving
through filters. In cases of variable support region size, integral
images (Viola and Jones, 2001), or summed area tables, can be
exploited for speeding up the cost aggregation process (in fact,
these had been originally proposed for efficient computations on
texture mapping by Crow, 1984). Their use in cost aggregation
can drastically reduce computational load, because summations
involving matching cost for a pixel need to be performed only once
(Veksler, 2003; Zhang et al., 2009).

Aggregated pixel costs Caggr are normalized by the number of
pixels in the support region to ensure that costs per pixel have
the same scale:

Cðp; dÞ ¼ Caggrðp;dÞ
kSðp;dÞk ð6Þ
4. Representation

4.1. Disparity space images

The total cost function C(x,y,d) produces values for each pixel
(x,y)T per each potential disparity value d. An effective way of rep-
resenting the field of values of function C is a cost volume defined
in the three dimensions x, y, d (cf. Fig. 12). This representation of
the stereo-matching function is referred to as disparity space image
or DSI (Yang et al., 1993; Bobick and Intille, 1999; Brown et al.,
2003). Slices parallel to the x–y and x–d planes offer a thorough



Fig. 6. Examples of the support regions formed with the linear approach for the
generation of cross-based windows.
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understanding of the cost function performance. An alternative
method for representing stereo-matching cost function through a
DSI is via a graph, in which the axes present the corresponding cost
values for pairs of homologue epipolar lines (left/right scan-lines).
This representation is exploited when optimizing through dynamic
programming (Ohta and Kanade, 1985; Cox et al., 1996). DSI is a
convenient representation, alternative to the volumetric object
coordinates representation (x,y,Zspace) which is common in the
field of multi-view matching (Moravec, 1996; Collins, 1996).

In Fig. 7 x–d DSI slices (left) are presented at three scan-lines of
the Middlebury Teddy pair. On each such diagram per epipolar line
a minimum path d(x,y) in cost volume is defined; these cost paths
form the disparity map. Some cases worth noting are marked in
Fig. 7 on the original base image and the respective minimum cost
positions on the x–d DSI slices. Pixels in positions a, e, b belong to
disparity map edges and indicate break-lines on the physical object
(abrupt increase in depth). Such a decrease in the disparity value
relates to an occlusion on the left (base) image. On the other hand,
gaps in DSI slices, like those at segments (fg) and (cd) in Fig. 7, indi-
cate occlusion areas on the right (match) image. These appear on
DSI slices as an increase of disparity value followed by a diagonal
shift of the minimal path, which defines a poor minimum cost
solution. Repetitive patterns on the two images will also be visible
on the DSI slice as multiple local minima on the cost function (as in
segment bc). The two upper images on the right in Fig. 7 are x–y
DSI slices of the cost volume at two disparity values d. The lower
image on the right is the final WTA selection of smallest costs at
each pixel position.
5. Geometrically constrained smoothing of cost volume

Aggregation of cost has the inherent limitation of assuming that
all pixels in a neighbourhood share the same depth, an assumption
favouring fronto-parallel surfaces. Its consequences are clearer
when actually reconstructing a 3D scene from two images than
when simply assessing the quality of a disparity map. The assump-
tion of fronto-parallel planar surfaces is also present in the
smoothness constraint in several matching functions optimized
globally (Terzopoulos, 1986; Strecha, 2007), since cost aggregation
for inclined surfaces is not a common approach. Relevant research
seeking 3D support in local stereo uses: a surface continuity prior
by assuming that disparity differences in a neighbourhood follow
the normal distribution (Prazdny, 1985); limitations in disparity
differences (Pollard et al., 1985); a statistical model for adaptive
windows which incorporates fluctuations of disparity and intensity
(Kanade and Okutomi, 1994); 3D cost aggregation with explicit
occlusion detection (Zitnick and Kanade, 2000). Furthermore,
Ogale and Aloimonos (2004) handle surfaces horizontally slanted
with respect to the stereo base; Zhang et al. (2008) have proposed
weighted aggregation in 3D disparity space based on initial dispar-
ity gradients; Bleyer et al. (2011) project support regions on esti-
mated segmented planes; and Antunes and Barreto (2013) have
imposed slanted surfaces on histogram aggregation hypothesis.

Here, we propose the weighted aggregation of 2D aggregated
costs C0(x,y,d) belonging to geometrically possible disparities
around a pixel through the convolution of cost volume with a 3D
Gaussian filter:

f ðnÞ ¼ 1

ð2pÞ3=2jRj1=2 exp �1
2
ðn� �nÞTR�1 n� �n

	 
� �
ð7Þ

Smoothing cost values with a 3D filter to attribute weights to all
cost elements may be regarded as aggregating costs C0(x,y,d) for all
possible neighbouring pixels q(x,y) and all possible disparities.
This is equivalent to using a 3D support region

Cðx; y;dÞ ¼ k � C0ðx; y; dÞ ð8Þ

The partial Gaussian kernel k (Fig. 8) is adapted in order to serve
the ordering (Yuille and Poggio, 1984) and uniqueness constraints
(Marr and Poggio, 1976). This kernel has the properties of attribut-
ing weights to neighbouring costs inversely proportional to their
spatial distance in the DSI. This approach of 3D local support ex-
ploits the attributes of DSI representation and has the advantage
of avoiding the need for explicit identification of slanted surfaces
in 3D world space.

In Fig. 9 (top) the disparity function with respect to pixel posi-
tion x on a scan-line is presented. The respective scan-line on the
right image is seen below. Identical shades of grey represent pixel
correspondences between the two diagrams. The 7th pixel (p) is
the one under inspection. This x–d DSI slice is divided in four areas,
based on the possibility that the neighbours of p have these spe-
cific disparities, and are defined by the two dashed lines. Positions
on the 45� diagonal all correspond to the 3rd pixel of the epipolar
line on the right image, hence this is the maximum increase in dis-
parity (d = xref–xmat). Since only one-to-one correspondences are al-
lowed, these positions should not contribute to the diffused cost of
p. Positions above and below p (vertical dashed line) are also inva-
lid, because they correspond to multiple disparity values for p. The
two described directions (dashed lines) on the graph define four
areas, only two of which contribute to the cost diffusion (hatched
areas). Positions included in the two non-hatched triangles formed
by the dashed lines in the graph violate the ordering constraint; a



Fig. 7. Disparity space image (DSI) representation of the cost function for the Teddy pair. Left: x–d DSI slices at epipolar lines y = (100,200,300). Right: x–y DSI slices at
d = (20,40) and the WTA solution costs. Darker areas depict low cost matching values; white areas show locations of high cost.

Fig. 8. 3D intersection at the x–d plane of a Gaussian filter restricted by occlusion
borders (half of the 5 � 5 � 5 kernel k is displayed here).

Fig. 9. Above: positions excluded by the ordering and uniqueness constraints in an
x–d slice for the cost of reference image. Below: correspondences in the matching
image; identical grey shades indicate pixel correspondences between images.
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larger decrease in d would result in an inversion in the sequence of
pixels.

The standard deviation of the Gaussian function is set in accor-
dance to the full width at half maximum parameter:

r ¼ lk
2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p ð9Þ

with lk being the length of the kernel. Thus, r in each filter direction
does not need to be set manually, and filter shape is independent of
its size. The full width at half maximum parameter is the denomi-
nator in Eq. (9). The 3D smoothing process described here can also
be seen as a local diffusion process, based on 3D disparity space and
imposed as a smoothness constraint. Usual diffusion processes are
iteratively applied separately at each DSI level, i.e. in 2D. Although
iterative diffusion is usually part of global approaches, local itera-
tive diffusion has also been proposed (Scharstein and Szeliski,
1998). This smoothness constraint is applied here on costs already
aggregated in 2D; hence its impact is restricted by the outcome of
the previous step of the algorithm. Yet, disparity maps and resulting
reconstructions on challenging datasets indicate that the result is
more robust. Results for the disparity map for pair #6 of the KITTI
benchmark site (Section 8.5) are seen in Fig. 10. In a scene with
many inclined surfaces, where local methods often fail, the pro-



Fig. 10. Improvement of the disparity map through geometrically constrained smoothing of the cost function showing the estimated disparity map without (middle) and
with (bottom) cost smoothing. Windows a, b and c indicate areas of improvement.
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posed geometrically constrained smoothing of the cost function
yields an improvement of �10%. Indicated rectangles a, b, c include
areas where surfaces of high inclination are correctly constrained.
At a and b, in particular, the surface direction is almost perpendic-
ular to the camera plane, thus severely violating the assumption of
fronto-parallelism made in the aggregation step. The average
improvement across the complete KITTI dataset is �5%, and the
improvement through constrained smoothing compared to typical
3D Gaussian smoothing is �1.5%.

The estimation of disparity is carried out in the WTA mode, as in
most local and semi-global approaches. The disparity label with
the lowest cost is selected, i.e. dWTA = argmind(C(p,d)).

6. Hierarchical approach

An increasing variety of high resolution imaging systems is now
available both to public and professionals in several areas of inter-
est. Hence, algorithms capable of handling large amounts of data
are needed. An extension of the method reported in the preceding
sections to high resolution images is necessarily based on scaled
representations of the stereo-pair. The aim is to limit the disparity
search space to a computationally manageable range, and also
guide matched disparities in a coarse-to-fine context through
scale-space. This approach also reveals structures in different lay-
ers of image pyramids, which lead from a rough, yet close to real-
ity, 3D surface to finer detail as one proceeds through the image
pyramid. Matching is steered through this ‘‘flow of information’’,
and the possibility of getting stuck to local minima is narrowed
down (Moravec, 1980; Quam, 1986). Gaussian pyramids are
employed here with a 3 � 3 (r = 0.5) filter for all scales and subse-
quent down-sampling by a factor of 2.
The disparity map is expanded to the next finer level by propa-
gating disparities via bilinear interpolation and smoothing by
Gauss filtering for removing spikes. Also, gaps in the intermediate
disparity maps due to outliers detected during image match con-
sistency check (Section 7.1) are filled by interpolation to neigh-
bouring valid pixels. The initial disparity map is regarded as a
‘‘zero map’’, in the sense that the search space is bounded between
zero and the width of the lowest pyramid layer, which means that
no initial rough object model (e.g. derived from SIFT key points) is
needed.

While the exploitation of a multi-resolution scheme produces a
faster algorithm and a more firmly bounded matching procedure,
errors originating from remaining local minima in the initialization
step, or ill-defined/inadequate disparity search space, can still be
transferred across the pyramid. Outliers due to mismatches may
well find their way up to the final result, especially since cost mea-
sure is not thresholded (as opposed, for example, to correlation
techniques). These mismatches usually appear as local extrema
in the disparity function; thus, low-pass filtering is needed. Never-
theless, this approach often fails due to the small filter size, re-
quired for avoiding excessive smoothing, particularly in case of
discontinuities (and also of large repetitive patterns or untextured
areas). Discontinuities are in fact of special interest, as matching
based on hierarchical representation often fails in determining cor-
rect boundaries. This is partially due to the accumulation of erro-
neous disparities around object borders, which occur either by
the upscaling of disparity maps or the reprojection of erroneous
pixels in coarser scales in object space. At this point, therefore,
the cross windows mentioned in Section 3.1 are introduced, ex-
tended by a number of pixels (here 2 pixels), to restrict the field
of values of the disparity function per pixel.



Fig. 11. The field of values for pixel disparities is displayed. The diagram contains
the disparity values against x positions. The disparities of the minimum cost
solution for each pixel along the scan-line are marked with ‘‘x’’; the dashed lines
mark the range of potential disparities. The line below presents the epipolar line in
question. Each pixel has a different disparity range defined by the scale of the image
and its support region. The interval between pixels a and b is an occlusion area;
pixel c is on a disparity discontinuity. The disparity range is significantly widened
near edges, whereas it is narrowed in areas of small slope of the disparity function.

Fig. 12. Cost volume computation starting from a low resolution stereo pair (a low
resolution cost volume). The cost volume is refined as the solution progresses from
coarser to finer scales. The search space for disparity of each pixel is independently
defined and is usually larger in areas near discontinuities. The minimum cost
solution is seen in blue. Slices in x–d and x–y levels (discussed in Section 4.1) are
also visible. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

38 C. Stentoumis et al. / ISPRS Journal of Photogrammetry and Remote Sensing 91 (2014) 29–49
In particular, it is accepted that pixels q, which belong to the
support region S(p,d) of p (Section 3.1), can adequately define
the disparity ds

p range for p via their approximate disparity ds�1
p ,

which has been computed in the coarser layer. Thus, if s denotes
the current pyramid layer and s1 the coarser layer, the disparity
range is:

min
q2Sðp;dÞ

ds�1
q 6 ds

p 6 max
q2Sðp;dÞ

ds�1
q ð10Þ

In this way mismatches near edges, where ‘‘jumps’’ in the dis-
parity map occur, are dealt with. The search interval is sufficiently
wide to overcome misplacement of edges in the disparity map of
lower resolution layers, but also remains restricted within a sup-
port region (Fig. 11), which is adapted not only to image space
but also in scale. This is an important aspect, since one thus avoids
explicit treatment of discontinuities (Sizintsev and Wildes, 2010;
Sun et al., 2011) or the use of more elaborate approaches (e.g.
through edge-preserving filters) for creating image pyramids for
matching.

In Fig. 12 the refinement of the initial cost volume is presented.
At each scale, the range of disparity ds

p of position p is restricted by
Eq. (10). The lowest scale representation of stereo-pairs result in a
compact cost volume since all potential disparity labels participate
in the solution. Movement towards larger scales produces an
‘‘eroded’’ cost volume, as the range of ds

p is being gradually
narrowed. Slices x–d defined per epipolar line y depict the
matching function for the specific line. The minimum solution of
this function is distinguished as blue in Fig. 12.
6.1. Hierarchical vs original approach

The use of the hierarchical scheme is evaluated here against the
original approach regarding the two aforementioned objectives:
guidance of matching across scales and computational efficiency.
In Fig. 13 the improvement of results is displayed when exploiting
the hierarchical scheme on pair #51 of the KITTI dataset. The figure
represents, admittedly, an extreme case as the error percentage
without the hierarchical scheme is 67%, while dropping to 17%
when it is activated. One may notice that texture-less regions,
e.g. road or wall surfaces, result in very poor local minima for the
cost function. It is in these cases that the hierarchical scheme helps
the most, by gathering wider spatial information in low resolutions
and using it to restrain the solution in larger scales. Another way



Fig. 13. Disparity maps (levelled between 0 and 90 greyscale values) for stereo pair
#51 of the KITTI training set. From top to bottom: original base image; disparity
map produced without matching across scales; disparity map by coarse-to-fine
matching; ground truth map.

Table 2
Percentage of erroneous disparities for the complete KITTI training set (nonocc).

Core matching Refinement process

No hierarc Hierarc No hierarc Hierarc

26.38 14.05 20.85 12.89
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for strengthening matching solution would be to use very large
support regions by relaxing the thresholds defining cross regions,
but this would assume fronto-parallel surfaces and yield low
accuracy.

In Table 2 the results from the complete KITTI training set are
reported and compared regarding the achieved accuracy. The error
rate for the core matching process is 26.38 when images are
matched only on the original resolution and 14.05 when matched
across image pyramid. On the other hand, if the refinement process
(Section 7) is used results improve by 8% when a coarse-to-fine
matching is performed.

An intermediate observation is that refinement improves the
results by �6% when the coarse-to-fine option is disabled in the
method, while without refinement matching performed across
scale spaces achieves an improvement of more the 12%. This obser-
vation is of importance, because one can choose to drop the refine-
ment procedure when speed is more essential than accuracy. The
refinement procedure actually represents a time bottleneck of
the algorithm performance (Section 8.7). Moreover, matching di-
rectly on the finer scale requires 85% more time for the basic pro-
cedure (matching and DSI smoothing), a percentage which is
predominantly due to the large disparity range. Because of this,
the gap in running time between the presented hierarchical match-
ing and the single-scale version widens as the image size grows.
7. Post-processing

7.1. Constraints

7.1.1. Left–right consistency
Image matching consistency (cross-checking) between reference

and matching images is a common reliable tool for evaluating the
quality of disparity maps (Banks and Corke, 2001; Brown et al.,
2003). In local stereo algorithms this is easy to implement by com-
puting matches from the matching to the reference image, thus
creating the disparity map of the reference image. A pixel p is char-
acterized as valid (inlier) if its absolute disparity value and the
absolute value of its match in the matching image are equal. The
left–right consistency check does not make any distinction among
outliers of different origins (i.e. mismatches, occlusions), yet it per-
forms well in eliminating erroneous disparity (depth) estimates.
Results from this check can also be exploited for tuning the param-
eter set which controls a matching algorithm. Finally, it is noted
that (as mentioned in Section 5) the ordering and uniqueness con-
straints are also used.

7.2. Outlier median smoothing via cross-based regions

Post-processing of the disparity map by utilizing cross-based
support regions has been proposed by Lu et al. (2008); Zhang
et al. (2009). Originally, a method of voting bins was described
for selecting the most frequent disparity value in the support area.
This can be helpful in cases of a poor cost function and of support
regions of high confidence. Unfortunately, such an approach aggra-
vates the mentioned problems due to assumed fronto-parallelism
in local methods. Nonetheless, this is not the case for outliers
which have been located through the left–right consistency check;
the use of adaptive cross-based regions can provide useful infor-
mation for these incorrect disparities. Thus, for an outlying pixel
p its cross-based region S(p) is formulated on the left image and
the inliers in S(p) are detected. The median of these valid dispari-
ties is attributed to p if the number of inliers within S(p) exceeds
a certain threshold. The above is particularly beneficial in occlusion
areas (Fig. 14). The method described is iterative since it is a ‘‘re-
gion closing’’ technique for large areas of outliers, such as occlusion
areas, which are progressively filled with neighbouring disparities.

7.3. Occlusion/mismatch labeling

In the preceding steps, outliers are located in the disparity map
and corrected through cross-based region smoothing. Although
disparities are improved, errors still exist since the effectiveness
of the previous step depends on the suitability of the support re-
gions. Initial outliers located in Section 7.1 may be categorized into
occlusions and mismatches. A thorough investigation of occlusion
detection techniques is found in Egnal and Wildes (2002). Here,
the technique of Hirschmüller (2008) based on epipolar geometry
has been implemented. Occlusions have been corrected via cross-
based region smoothing, since no actual information is available
in both images. For mismatches, however, the left–right check runs
again to locate remaining errors and correct them through interpo-
lating from nearest inlier neighbours.

7.4. Sub-pixel estimation

Finally, a sub-pixel estimation is performed (Yang et al., 2009).
This is done by interpolating a 2nd order polynomial curve to Cp(d),
which is the cost function with respect to disparity per pixel (d
direction of DSI):

CðdÞ ¼ a � d2 þ b � dþ c ð11Þ



Fig. 14. Performance of each refinement procedure regarding disparity map accuracy. Top: percentage of erroneous pixels in the complete image (all) and nonocclusion areas
(nonocc) for the 0.75 pixel threshold. Middle: same as above for the 1 pixel threshold. Bottom: average errors of all four Middlebury datasets for each comparison scheme
separately: nonoccluded pixels (nonocc), all image pixels (all), areas near discontinuities (disc). A: initial disparity map, B: cost smoothing, C: outlier cross-based filtering, D:
remaining occlusion/mismatch handling, E: sub-pixel estimation, and F: bilateral filter and median smoothing.
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This curve is defined by the cost values of the disparities of the
preceding and following pixels of the winner-takes-all solution. The
optimal sub-pixel disparity value dsub-opt is determined by the min-
imum cost position around the WTA solution (dWTA) through a
closed-form solution for the three cost values [C(dWTA � 1),
C(dWTA), C(dWTA + 1)]:

dsub-opt ¼ Cp dWTA þ 1ð Þ � Cp dWTA � 1ð Þ
	 


= 2 � Cp dWTA þ 1ð Þ
		

�2 � CpðdWTAÞ þ Cp dWTA � 1ð Þ




ð12Þ

Information from the cost function is thus exploited for the sub-
pixel estimation of disparity map.
7.5. Disparity map smoothing

Edge-preserving smoothing is needed after sub-pixel estima-
tion to remove noise from disparity maps and, as a consequence,
improve the quality of reconstructed surfaces. Here, bilateral fil-
tering is preferred (Tomasi and Manduchi, 1998) because it is
non-linear and non-iterative, in contrast to other efficient filters
based on iterative, computationally expensive schemes (e.g. total
variation). The filter is widened along the scan-lines (3 � 21) to
achieve smoother 3D reconstruction along epipolar lines. In the
tests with the Middlebury stereo-pairs, the overall result remains
basically unaffected by bilateral filtering, but for all other data-
sets improvement is noticeable. This is obvious mainly in the
quality of the reconstructed point clouds in Section 8. A final
median kernel is applied on the disparity map, as a ‘‘stronger’’
edge-preserving filter. This helps restore coherence among
smoothened disparities of adjacent epipolar lines and improve
the edges of the disparity map; the effect of this last step is ob-
served in areas around discontinuities, as seen in the lowest dia-
gram of Fig. 14. The effect of the overall post-processing
refinement is illustrated further below (Fig. 17).

Finally, the charts in Fig. 14 present the improvement obtained
at each refinement step for the 0.75 and 1 pixel thresholds for the
Middlebury pairs. The first two rows display the improvement per
step for every stereo-pair. The errors refer to non-occluded areas
(nonocc) and to the whole image (all). In the last chart, the average
error of all four stereo-pairs under the 0.75 pixel threshold is pre-
sented per each category (nonocc, all and disc, i.e. areas near
discontinuities).

In the lowest chart one may observe that 3D cost smoothing (B)
slightly deteriorates the disparities in areas around discontinuities.
This is to be expected since the Gaussian function used here as ba-
sis of the 3D smoothing kernel does not preserve edges. Despite
this, the contribution of 3D smoothing to disparity improvement
is seen at the nonocc and all curves, and primarily at the results
presented later for other datasets. Also, the improvement from step
E to F is small, but distinct for the areas near discontinuities (as
shown in the lowest diagram of Fig. 14).
8. Results

The presented algorithm has been evaluated on the Middlebury
on-line platform and further tested using other available data sets
as well as our own imagery.
8.1. Evaluation on the Middlebury platform

The set of parameter values used here are seen in Table 3;
results are shown in Figs. 15 and 16.



Fig. 15. Diagrams presenting the response of the algorithm to the tuning of individual parameters with the rest of the parameter set remaining constant. The average errors of
all four stereo pairs for each evaluation area (nonocc, all, disc) are displayed.
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Figs. 15 and 16 display the stability of the algorithm to param-
eter tuning. Results are stable within a wide range of values for
each parameter. Only the maximum colour difference t and the
maximum length L play a more essential role in tuning as the
corresponding curves have a more obvious minimum. The size
of census filter (m,n) transforming the image does not affect sig-
nificantly the performance, hence it is reasonable to select a
small size to reduce computational load. Regularization parame-
ters k also prove to be stable, and it is only for extreme values
that the performance deteriorates. It is noted that in areas around
discontinuities the errors are more affected by the change of k,
especially for parameter kADg. When examining the effects of
parameter changes on individual stereo-pairs of the dataset
(Fig. 16) variation in performance is stronger than for the average
of the stereo-pairs.

Final results are seen in Figs. 17 and 18. In Fig. 17 the estimated
disparity maps, the erroneous pixels and the true disparity maps
are shown for each stereo pair. The algorithm performance is
indeed encouraging, as it is rated among the top algorithms re-
ported in the Middle bury evaluation platform. When comparing
for the >1 pixel error tolerance, our approach scores worse than
ADCensus (Mei et al., 2011) which is currently at the 2nd position
of this plat form rating and uses a similar aggregation support re-
gion based on support skeletons (Zhang et al., 2009). On the other
hand, a major improvement is observed when comparing for sub-
pixel accuracy. The pipeline proposed in this paper results in a high
performance under the error thresholds of 0.5 and 0.75 pixels in
disparity values differences. In fact, it rates 4th in the 0.75 pixels
threshold comparison (2nd when initially submitted), while most
topper forming methods for the 1 pixel threshold give poor results
for sub-pixel testing, regardless of optimization method (local/glo-
bal). Average % error in our case is 6.15 (LAMC-DSM: Local Adaptive
Multi-Cost Dense Stereo-Matching in Fig. 18). Good sub-pixel ac cu
racy is important for several applications since it significantly im-
proves the quality of 3D reconstruction and of the triangular
meshes subsequently produced. The lack of sub-pixel accuracy



Fig. 16. Diagrams presenting, as in Fig. 15, the response of the algorithm to the tuning of individual parameters, but in this case the response to parameter tuning is presented
separately for each data-set only for non-occluded pixels.
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leads to poor 3D meshes because of the discrete values of depth
information (quantization effect).

At this point one might mention that the Middlebury platform
has been ‘‘saturated’’ over the years. Although this evaluation
framework has indeed triggered new theories and implementa-
tions, the differences today in algorithm ranking may in some cases
be attributed to over-fitting. Images from the 2006 datasets are
interesting, but do not form part of the ranking framework. Hence,
these tests will probably continue to serve stereo matching, but
new datasets with more realistic and diverse scenarios are defi-
nitely required.

8.2. EPFL multi-view data-set

Strecha et al. (2008) published a benchmark for high resolution
images. Ground truth data are derived from laser scanner at Ecole
Polytechnique Fédérale de Lausanne (EPFL) computer vision
laboratory (http://cvlabwww.epfl.ch/~strecha/multiview/). Fig. 19
shows a stereo pair (6 Mp images: 0006.png, 0007.png) from the
Herz-Jesu-K7 multi-view data set and respective matching results.
An indication for the accuracy of reconstruction has been gained
by registering the generated point cloud onto the ground truth
data via the ICP surface matching algorithm (Fig. 19, bottom).
The overall mismatch is represented by an average distance of
10 mm and a standard deviation of 19 mm. Reduced to mean
image scale, these values correspond to �1.8 and �3.4 pixels,
which are considered as quite satisfactory.

8.3. Column capital

The proposed method has also been tested on an object of high
archaeological interest (Fig. 20), namely a column capital from the
temple of Athena Nike on the Acropolis of Athens (http://ysma.gr/
en/athena-nike). The images (camera: 12 Mp Canon EOS5; pixel
size: 8.24 lm) had originally been taken for creating an orthomo-
saic of the capital with conventional photogrammetric techniques

http://cvlabwww.epfl.ch/~strecha/multiview/
http://ysma.gr/en/athena-nike
http://ysma.gr/en/athena-nike


Fig. 17. First row: resulting disparity maps before multi-step refinement process on the four stereo pairs of the Middlebury evaluation platform. Second row: final resulting
disparity maps after the matching procedure is completed. Third row: ‘‘bad’’ pixels of the produced disparity maps evaluated under the 0.75 pixel error threshold;
mismatched pixels in occluded areas are indicated by grey colour, in non-occluded areas in black. Last row: true disparity maps referring to the left image of each stereo-pair.

Table 3
Parameters values used for all images.

Census transformation m 11 Lambda kc 45
n 9 Lambda kADc 5

Length threshold Lmax 31 Lambda kADg 18
Colour threshold smax 24 Cost smooth k 5
Cross-based smooth iterations 5 Bilateral filter rI, rD 1,7.5
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and form part of the Acropolis Restoration Service archive. The
orientation parameters were determined with our automatic
bundle adjustment software (control points simply served for
scaling purposes). Three pairs were used for complete reconstruc-
tion, yet matching was based on stereo.

Although in this case no ground truth was available, optical
inspection supports the claim that the 3D reconstruction is quite
satisfactory.
Fig. 18. Results from the Middlebury evaluation platform for the 0.75 pixel threshold. Col
and Cones stereo pairs; and average percent of bad pixels (errors are recorded for cases
2014.
8.4. DMC aerial images

In Fig. 21 the performance of the algorithm on a part of an aerial
image pair is presented. The DMC images and their orientations
were obtained from the Photomod software demo. Estimated dis-
parity maps, textured isometric plots and the reconstructed model
are presented.
8.5. KITTI dataset

Finally, the algorithm was tested on the Karlsruhe Institute of
Technology and Toyota Techno logical Institute (KITTI) benchmark
for stereo vision in autonomous navigation (http://www.cvlibs.
net/datasets/kitti; Geiger et al., 2012). This consists of 195 particu-
larly challenging stereo-pairs depicting real world scenes. Highly
inclined surfaces, non-textured or shaded areas and extreme
umns from left to right: method; average rank; errors for the Tsukuba, Venus, Teddy
of non-occluded pixels, all pixels, discontinuities). Date of evaluation: February 3,

http://www.cvlibs.net/datasets/kitti
http://www.cvlibs.net/datasets/kitti


Fig. 19. Epipolar Herz-Jesu-K7 stereo-pair (a); disparity map (b); detail of the 3D representation of the disparity map (isometric plot of the disparity map) (c); textured point
cloud (d); reconstructed point cloud registered to ground truth data (e).
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Fig. 20. Stereo-matching results for a column capital (the original four images are seen on top).

Fig. 21. Stereo-matching results for aerial images. Reference image, textured isometric plot of the disparity map, reconstructed point cloud and estimated disparity map
(clockwise from top left).

Fig. 22. Results from the KITTI evaluation platform for the default 3 pixel threshold. Columns from left to right: rank; method; percentage of erroneous pixels in non-occluded
areas; percentage of erroneous pixels in total; average disparity/end-point error in non-occluded areas; average disparity/end-point error in total; density of disparity map;
runtime; environment. Date of evaluation: February 3, 2014.
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Fig. 23. Matching results for stereo pair 5 of the KITTI evaluation platform. Top: reference (left) image. Middle: disparity error map. The error map accounts for 0 (black) to
P5 (white) pixel error; pixels outside the right image area are marked in red. Bottom: estimated disparity map. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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radiometric changes are some of the aspects differentiating this
benchmark from others. Besides, these grey-scale images do not
allow the algorithm to take advantage of colour. Most methods
top-performing in Middlebury benchmark rank low in these
scenes.

Fig. 22 presents a screenshot of the on-line evaluation platform.
In Fig. 23 an example is seen including the estimated error and dis-
parity maps. Detailed results for the overall performance of our
algorithm and the performance for individual stereo-pairs on the
KITTI benchmark are found on the evaluation page http://goo.gl/
X4OhL.

These results are indeed promising, however further consider-
ations are needed to improve the performance of LAMC–DSM in
such scenes. Most errors are due to mismatches on the coarser
scale which are carried across the pyramid because of the
limitations of the cross-based windows. When compared to other
images tested, the KITTI images are generally blurred and some-
times partly over-saturated, and hence more prone here to incor-
rect matches when compared to global approaches. Also, large
portions of these images represent flat surfaces highly inclined
against the image plane, thus severely violating the assumption
of fronto-parallelism. Moreover, such flat surfaces suffer from a
lack of texture. Global methods can improve the disparity map
thanks to smoothness constraints, but local methods have to
balance the support region size with the ability to describe
non-frontoparallel surfaces. Finally, the absence of colour is a
further limiting factor.

Very ‘‘difficult’’ stereo-pairs had errors close to 25%, thus lower-
ing the overall performance of the algorithm. A possible treatment
of this problem may be in the direction of restricting disparity tol-
erance by robust feature points (and certainly of defining a new set
of parameters for the algorithm). The rank of our algorithm (34th)
has dropped significantly (�15 positions) since the results were
first submitted. This rapid change over a period of some months
might be seen as an indication of the ‘‘potential’’ of this particular
dataset.

8.6. A comparison with semi-global matching

In this section, results from comparing the presented matching
scheme against semi-global matching (SGM) approaches
(Hirschmüller, 2008) are reported. We use our own implementa-
tion of SGM in 8 directions to optimize the cost function discussed
in Section 2 and evaluate the results on Middlebury and KITTI
benchmarking platforms. We also compare the above two stereo
configurations against the results for SGM under Mutual Informa-
tion (MI) cost (for Middlebury images) and census cost (for KITTI
images) reported by the author. When using our multi-cost func-
tion the hierarchical local disparity selection performs better than
the semi-global optimization in both evaluation platforms, but
results are more complicated if the cost changes.

In more detail, our hierarchical local adaptive approach yields
results which are better by 1.15% than SGM in non-occluded areas
of the Middlebury tests and by 6.33% in the vicinity of discontinu-
ities when optimizing the proposed cost function. Using this cost,
the local matching scheme also outperforms SGM in KITTI evalua-
tion by 5%. The comparisons refer to the core procedure without
the post-processing steps. If the latter are used, LAMC–DMC is still
better (by 2.63%) than SGM under MI cost in Middlebury images.
On the other hand, SGM with census is reported as being better
than LAMC–DMC by 4% in KITTI (SGM reports 85% completeness
of the disparity map, whereas we produce complete maps).
Obviously, when the full matching scheme (i.e. including
post-processing) is used the different post-processing steps differ-
entiate the comparisons, but they are indicative of the limits of
each method. However, the matching cost measure optimized in

http://goo.gl/X4OhL
http://goo.gl/X4OhL
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SGM is not the same for the reported results in the two platforms
and, apparently, neither are the parameter values. In any case, the
reported SGM result is better in KITTI, which might be partly
attributed to the different tuning of the algorithm, compared to
Middlebury stereo pairs (we have kept the same values for our
parameters, as already mentioned).
8.7. Algorithm efficiency and bottlenecks

Here we will give an insight about the computational efficiency
of the algorithm; memory consumption and running time will also
be commented upon. The presented matching scheme has been
implemented in Matlab technical language for rapid prototyping;
hence, very little attention has been given, at this stage, to optimiz-
ing computational load. Although our algorithm is not adapted to
hardware, nor is it optimized for real-time applications, its com-
plexity can be computed based on theoretical considerations and
relevant publications (Wang et al., 2006; Nalpantidis et al., 2008;
Sizintsev and Wildes, 2010).

The theoretical complexity of the hierarchically structured algo-
rithm, which is reduced by appropriate treatments as discussed
later on, is described by the following equation:

O wIhIdnSð Þ þ O ðwIhIÞ=4 � dnSð Þ þ O ðwIhIÞ=16 � dnSð Þ þ . . .

þO ðwIhIÞ=22ðs�1Þ � dnS

� �
< ð1þ 1=3Þ � O wIhIdnSð Þ ’ O wIhIdnSð Þ

ð13Þ

where wI and hI denote the width and height of image I, d is the dis-
parity range, s the pyramid layer and nS the number of pixels in sup-
port region S. Disparity labels d and pixel number nS are variable, as
they both depend on the adaptive shape of support regions S on
each scale; consequently, the maximum load is determined by the
maximum disparity range and dimensions of the support region.
However, d and nS are generally much smaller than wI and hI. Be-
sides, although the number of pixels participating in the aggregation
step (Section 3) is arbitrary, the use of integral images decomposes
area summation, so that each pixel participates once in two sequen-
tial 1D summations of constant time, increased by the time needed
to query a lookup table for the cross skeleton arms. Complexity does
not increase for post-processing steps, as each pixel participates a
constant number of times in operations, hence complexity can be
roughly approximated by O(Npix�d), where Npix = wI � hI is the num-
ber of image pixels. Cost smoothing is performed through convolv-
ing with a constant 3D filter, and O(Npix�d) implementations can be
used.

Markov Random Fields models represent a common and effec-
tive approach in stereo. MRFs can be optimized by solving network
flow problems on graphs, which has complexity O(V�E2). For a full
graph with one node for every pixel at every disparity (e.g. Ishika-
wa et al., 1998) this amounts to O(N3

pix � d
3), since the number of

edges per vertex is constant. Alternatively, the a-expansion solves
the multi-label graph-cut as a sequence of binary graph-cuts over
the d disparities, which is iterated i times until convergence, hence
O(N3

pix � d � i). Empirically, the complexity on regular image grids is
however only about O(N1:2

pix � d
1:3) (Roy and Cox, 1998; Boykov and

Kolmogorov, 2004). If MRF inference is instead done with i itera-
tions of (loopy) belief propagation, the complexity is O(Npix�d2�i)
(Sun et al., 2003), but it can be reduced to O(Npix�d�i) for image ras-
ters with the help of distance transforms (Felzenszwalb and
Huttenlocher, 2004). Historically, dynamic programming (‘‘scanline
stereo’’) was common in stereo matching (Ohta and Kanade, 1985),
with complexity O(Npix�d). The more recent semi-global method
requires solving the dynamic program for a constant number of
times (one per direction) and thus has the same complexity
O(Npix�d) (Hirschmüller, 2008).
Regarding memory, the largest variable to be stored is the DSI
representation, which is an O(Npix�d) volume that has to be
processed. It is possible for local methods to bypass the construc-
tion of DSI and its complete allocation to memory, but in the pres-
ent algorithm we exploit it for integral image summation and
geometrically constrained cost smoothing, hence there is a mem-
ory/speed gain trade-off. The DSI volume is stored in uint32 vari-
ables, but a more dedicated implementation would use fewer
bits for integer values. Nevertheless, memory consumption is kept
significantly lower than GC, BP. Variational methods consume
O(N2

pix) memory based on total variation regularization. Our algo-
rithm, as most local or semi-global implementations, and in con-
trast to global methods, allows images tiling with tolerable
effort. We can thus process images of any size, if appropriate tile
overlap is used. It is noted that in our case tiling has been needed
only for handling aerial images. Tiling can also be exploited for par-
allel processing in order to improve speed.

Concerning speed, a main advantage of local matching is that it
can, inherently, be implemented for parallel processing on com-
mercial graphic cards and FPGAs (Nalpantidis et al., 2008). The
hierarchical scheme imposes a sequential structure of the algo-
rithm, but this is actually not a serious drawback since tasks can
be effectively programmed per scale. The cost volume is computed
independently for each pixel, thus it can run simultaneously for
any number of threads, and census matching cost computation is
fast (binary descriptor). Computing cross skeletons and smoothing
via cross-regions represent the speed bottlenecks of the algorithm,
but both processes can be implemented in parallel for each direc-
tion or/and for each pixel. The adaptive definition of disparity
range does not allow reducing worst-case complexity, but in prac-
tice a very limited range is searched in most regions except areas
near surface boundaries.

Running times reported at the cited evaluation platforms corre-
spond to a non-optimized Matlab implementation with a 2.5 GHz
processor. No special consideration has been given to reducing
running time or memory consumption, since the main focus was
here on the quantitative and qualitative assessment of accuracy.
This said, the low computational complexity and the flexibility of
the algorithm are not compromised, since each component re-
spects the inherent simplicity and scalability of local methods.
9. Concluding remarks

The stereo matching algorithm presented here relies on a multi-
component cost function, an adaptive support region and a novel
smoothing of cost in the disparity space, supported by a hierarchi-
cal scheme. This formulation dispenses with the need for global
optimization, as it shows a remarkable tolerance to inclined sur-
faces, relaxing the assumption of ‘‘fronto-parallelism’’ which is a
major limitation of local stereo methods. A series of post-process-
ing steps are applied for refining the initial disparity map and
achieve good sub-pixel performance. Our LAMC–DSM algorithm
has been tested under a variety of circumstances: large-scale
images, wide and short-based views, high and lower resolutions.
Disparity maps and reconstructed 3D scenes have been presented
for evaluating matching results. A comparison to semi-global
matching has also been included. The performance is considered
as promising, or even satisfactory, according to imaged scene. It
is noted that, so far, no differentiation of scenes has been done
for the evaluation of the algorithm, although different tuning and
extra restrictions, or considerations based on scene particularity,
are possible (e.g. stereo-pairs for autonomous driving mainly de-
pict streets and surfaces perpendicular to the image plane). Thus,
LAMC–DSM is presented here as a general purpose matching
scheme, but adaptation according to dataset is expected to
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improve performance. Special care has been taken in order to en-
sure that the individual steps of the algorithm are reproducible.

Contributions presented include the use of census transforma-
tion on image principal gradients and the combination of multiple
matching measures in the final cost; a cost smoothing process for
3D support; and a suitable hierarchical scheme. Further aspects are
the employment of a linear threshold in the cross-window formu-
lation and a robust post-processing scheme based on known steps.
Future research topics include expansion of the algorithm for mul-
tiple base-line stereo-matching, but also improvements in the
matching algorithm itself and a theoretical justification of census
on gradients. Finally, further work needs to be done towards
improving 3D local support and further weakening the assumption
of fronto-parallel surfaces inherent to local methods.
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