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ABSTRACT 
In recent years, a demand for 3D models of various scales and precisions has been growing for a wide range of applications; among 
them, cultural heritage recording is a particularly important and challenging field. We outline an automatic 3D reconstruction pipe-
line, mainly focusing on dense stereo-matching which relies on a hierarchical, local optimization scheme. Our matching framework 
consists of a combination of robust cost measures, extracted via an intuitive cost aggregation support area and set within a coarse-to-
fine strategy. The cost function is formulated by combining three individual costs: a cost computed on an extended census transfor-
mation of the images; the absolute difference cost, taking into account information from colour channels; and a cost based on the 
principal image derivatives. An efficient adaptive method of aggregating matching cost for each pixel is then applied, relying on li-
nearly expanded cross skeleton support regions. Aggregated cost is smoothed via a 3D Gaussian function. Finally, a simple ‘winner-
takes-all’ approach extracts the disparity value with minimum cost. This keeps algorithmic complexity and system computational re-
quirements acceptably low for high resolution images (or real-time applications), when compared to complex matching functions of 
global formulations. The stereo algorithm adopts a hierarchical scheme to accommodate high-resolution images and complex scenes. 
In a last step, a robust post-processing work-flow is applied to enhance the disparity map and, consequently, the geometric quality of 
the reconstructed scene. Successful results from our implementation, which combines pre-existing algorithms and novel considera-
tions, are presented and evaluated on the Middlebury platform. 
 
 

1. INTRODUCTION 
 
Generation of dense 3D information using calibrated images is 
a central part of most applications in the field of photogramme-
try and computer vision (3D reconstruction, DSM production, 
novel view synthesis, automatic navigation). Two distinct pro-
cesses are the core of automating 3D scene reconstruction: es-
tablishment of correspondences among images for camera cali-
bration and dense 3D surface reconstruction. In this contribu-
tion a stereo matching algorithm for dense reconstruction is pre-
sented, based on epipolar images. 
 
In recent years a significant number of efficient algorithms have 
been proposed for creating accurate disparity maps (storage of 
x-parallax for all pixels) from single stereo-pairs. The effective-
ness of such algorithms has been extensively evaluated in sur-
veys (Brown et al., 2003; Dhond & Aggarwal, 1989); Scharstein 
& Szeliski, 2002, Hirschmüller & Scharstein 2009) and a dedi-
cated web site, which has also been used for evaluating our al-
gorithm (http://vision.middlebury.edu/stereo/). After Scharstein 
& Szeliski (2002), dense stereo correspondence algorithms may 
be broken down into four main steps. 
 
• Matching cost computation, where for every individual pixel 
a cost value is assigned to all possible disparities. Costs robust 
to radiometric differences, texture-less areas and regions with 
proximity to occlusion borders are needed. Klaus et al. (2006) 
have used a weighted sum of colour intensities and image gra-
dients; Hirschmüller (2008) has employed the ‘mutual informa-
tion’ approach in a semi-global context, while Mei et al. (2011) 
have combined absolute colour differences with a non-parame-
tric image transformation (census). 
• Cost aggregation. The assumption is made that neighbouring 

pixels share the same disparity, thus a summation (aggregation) 
of initial pixel-wise matching costs is carried out over a support 
region around each pixel. Rectangular windows of fixed or vari-
able size, fixed windows with varying weights (Yoon & Kweon, 
2006), as well as regions of arbitrary shape (Zhang et al., 2009), 
have been proposed. 
• Disparity optimization. Here an optimal disparity value is se-
lected for each pixel. Local methods (region-based) usually em-
ploy a ‘winner-takes-all’ strategy, namely the disparity with the 
lowest aggregated cost is chosen. Global methods, on the other 
hand, optimize an energy function defined over all image pixels 
by simultaneously imposing a smoothness constraint. Regarding 
the latter, various approaches have been implemented based on 
partial differential equations (Faugeras & Keriven, 1998; Stre-
cha et al., 2004), dynamic programming (Veksler, 2005), simu-
lated annealing (Barnard, 1986), belief propagation (Sun et al., 
2003) and graph-cuts (Kolmogorov & Zabih, 2001). 
• Disparity refinement, which aims at correcting inaccurate dis-
parity values and handling occlusion areas. Commonly used ap-
proaches include scan-line optimization, median filtering, sub-
pixel estimation, region voting, peak removal or occluded and 
mismatched area detection as well as interpolation (Hirschmül-
ler, 2008; Zhang et al., 2009; Mei et al., 2011). 
 
An approach for stereo-matching efficient in complex scenes is 
presented here. State-of-the-art techniques are integrated, with 
certain improvements being proposed for the cost computation 
and cost aggregation processes. In particular, the matching cost 
combines, via an exponential function, three individual costs: a 
cost computed on an extended census transformation of images; 
the absolute difference cost, by taking into account information 
from colour channels; and a cost based on the principal image 
derivatives. Costs of all pixels of the reference image over all 



possible disparities are stored in the form of a ‘disparity space 
image’ (Bobick & Intille, 1999). An aggregated cost volume is 
computed by linearly expanded cross skeleton support regions, 
similar to Zhang et al. (2009) and Mei et al. (2011). The aggre-
gated cost volume is smoothed via a 3D Gaussian function, and 
the disparity map is estimated using a ‘winner-takes-all’ selec-
tion. The above steps are integrated into a hierarchical scheme. 
As a last step, a robust post-processing work-flow is applied to 
enhance the disparity map. 
 
The algorithm presented here incorporates significant improve-
ments compared to that recently published by Sentoumis et al. 
(2012). For instance, the cost function is re-established since the 
census-based cost is improved, and a new cost term based on 
gradients in added. Also, a complete post-processing procedure 
is proposed and applied, resulting in refined reconstructions. Fi-
nally, a hierarchical scheme is composed in order to accommo-
date high-resolution images and complex scenes. 
 
 

2. MATCHING COST FUNCTION 
 
2.1 Census on intensity principal derivatives 

Census (TC) is a non-parametric image transformation (Zabih & 
Woodfill, 1994). For a support neighbourhood N(m×n) of pixel 
p, a binary vector forms a map of neighbouring pixels with in-
tensities smaller than that of p. A binary vector I of length m×n 
is then assigned to each pixel. Thus, if q is a neighbour of p: 
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In case m×n < 255 a 128 bit-string can store the descriptive vec-
tor of each pixel. Census-transformed image TC depends on how 
a pixel relates to its environment within the image patch. It is, 
therefore, robust against linear changes in brightness/contrast, 
i.e. radiometric distortions not modifying the ordering of inten-
sity values. Moreover, in this binary approach the actual values 
of individual pixel intensities do not affect the overall measure, 
but only a specific bit of the binary descriptor of p. 
 
Unlike other approaches (Banks & Corke, 2001; Hirschmüller 
& Scharstein, 2009), in the present algorithm the transformation 
is performed not on gray-scale image intensity function I but on 
its principal derivatives ∂I/∂x, ∂I/∂y. Image derivatives relate to 
characteristic structural image features (points, edges) and are, 
of course, extensively exploited as a rich source of information 
in image processing and computer vision. In the case of image 
matching they are used e.g. in gradient-based methods in global 
optimization formulations, feature-based methods and local ste-
reo (Scharstein 1994; Brown et al. 2003; Klaus et al. 2006). 

The present approach provides an extended binary vector 
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which strengthens the original transformation (Eq. 2). In Eq. (3) 
⊗ denotes the act of concatenation, following the original defi-
nition of TC. 
 
Direct introduction of gradients in two image directions doubles 
the size of vector Tc, thus exploiting the representational poten-
tial of image gradients. The matching cost between pixel p of 
the reference image and its homologue pixel p' in the matching 
image is, then, calculated as the Hamming distance (Hamming, 
1950). Census transformation based on image gradients appears 
as being less sensitive to radiometric differences and repetitive 
patterns for the purposes of stereo matching, while the discrimi-
native capability of the binary descriptor increases, leading to 
results of higher accuracy. 
 
Fig. 1 shows the performance of the proposed enhanced census 
matching function on the Tsukuba (above right) and Teddy ste-
reo pairs (below right) of the Middlebury data. For comparison, 
disparity maps obtained from matching with the original census 
transformation are also seen (left). According to results supplied 
by the Middlebury evaluation platform, the new disparity maps 
after the aggregation step (see section 0) have up to 2.5% less 
erroneous pixels if evaluating for wrong disparities over the 1 
pixel threshold. For sub-pixel accuracy (0.75 pixels) results for 
Tsukuba from the same platform are in fact improved by 5%. 
 

Figure 1.  Disparity maps for the Tsukuba (above) and Teddy 
(below) stereo pairs obtained via the default census transfor-
mation (left) and census on gradients (right) after the aggrega-
tion step. Indicated are examples for areas of improvement. 

 
2.2 Absolute difference on image colour 
 
The absolute difference on colour channels (ADc), or on inten-
sity, is a simple and easily implementable measure, widely used 
in matching (L1 correlation: sum of absolute differences). Al-
though sensitive to radiometric differences, it has been proven 
as an effective measure when combined with flexible aggrega-
tion areas and referring to combination of all colour layers. The 
cost term CADc is the average AD value of all three channels: 
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which turns out to improve results compared to matching on se-
parate channels or gray-scale (Yoon & Kweon, 2006).  



2.3 Absolute difference on image principal gradients 
 
Here, the image intensity derivatives in the two principal direc-
tions are extracted, and the sum of absolute differences of each 
derivative value in the x, y directions is used as a cost measure. 
Use of directional derivatives (Eq. 5) separately, i.e. before they 
are summed up to a single measure ADg (Eq. 6), introduces into 
the cost measure the directional information for each derivative. 

( ) ( / / )I x, y = dI dx, dI dy∇  (5)
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ADg
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A mild Gaussian filter (3x3, σ = 0.5) is applied on the greyscale 
images before calculating partial derivatives for reducing noise 
and smoothing around image edges. 

2.4 Total matching cost 
 
The final matching cost C is derived by merging three different 
costs: Census transformation on image gradients (expressed via 
the Hamming distance), absolute difference in colour (or inten-
sity) values and absolute difference on principal image gradi-
ents. A robust exponential function for cost combination (Yoon 
& Kweon, 2006; Mei et al., 2011) has been preferred, which re-
sembles a Laplacian kernel (Eq. 7): 
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The values of each cost should be normalized by λ to ensure 
equal contribution to the final cost, or tuned differently to ac-
cordingly adjust their impact on cost. Tests on the Middlebury 
data for stereo-matching are presented in Fig. 2 (see next page). 
 

3. COST AGGREGATION 

3.1 Support region formation 

Here, a modification of the cross-based support region approach 
is used. Such cross-based support regions are constructed by ex-
panding around each pixel p a cross-shaped skeleton to create 4 
segments defining two sets of pixels H(p), V(p) in the horizon-
tal and vertical directions, as seen in Fig. 3 (Zhang et al., 2009; 
Mei et al., 2011). The support skeleton (H(p) U V(p)) is expand-
ed on the basis of thresholds in spatial and colour space. 
 

H(p)

H(q)

p

q

S(p)
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Figure 2. Expansion of the cross-based support region S(p) dri-
ven by the skeleton of each pixel. The skeleton pixels for V(p) 
and H(p) sets are calculated only once per pixel. When pixel q
belongs to V(p), the corresponding horizontal arm H(q) is add-
ed to S(p). S(p) consists of the union of H(q) for all pixels q
which participate in V(p). [After Zhang et al., 2009.] 

For a more detailed description of cost aggregation, reference is 
made to Stentoumis et al. (2012). Thus only the main principles 
of this approach and our new contributions are mentioned here. 
 
A linear threshold is adopted for the cross-skeleton expansion: 
 

( ) max
q q max

max

τ
τ l l + τ

L
= − ×  (9) 

 
This linear threshold in colour similarity is a function of the dis-
tance between neighbouring pixels p and q. The user-defined 
arguments in Eq. (9) express the largest semi-dimension Lmax of 
the window size and the largest colour disimilarity τmax between 
p and q. Typical support regions created according to the above 
considerations are presented in Fig. 4. 
 

  

Figure 3. Examples of regions formed with the linear approach 
for the generation of cross-based windows. 
 
We note that generally a 3×3 median filter is applied for cross-
skeleton determination to ensure that image noise will not pre-
vent skeleton expansion. In case of defocused (or blurred) ima-
gery, adaptive histogram equalization is applied before median 
filtering. Moreover, the minimum length of all cross-segments 
is 1 pixel to ensure a minimum support region S of 9 pixels.  
 
3.2 Aggregation step 

Aggregation is applied on cost-disparity volume using the com-
bined support region S (i.e. the intersection of the support re-
gions which are formed based on the left Iref and right Imat ima-
ges per each disparity). The aggregated pixel costs Caggr are nor-
malized by the number of pixels in the support region to ensure 
that costs per pixel have the same scale (Eq.  10): 
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At this point of the algorithm, a 3D Gaussian function is applied 
for smoothing the aggregated cost volume. This improves cohe-
rence of neighbouring cost values and removes noise from the 
cost. Aggregation is implemented through integral images for 
reasons of efficiency (Viola & Jones, 2001). Disparity is esti-
mated in the ‘winner-takes-all’ mode, i.e. by simply selecting 
the disparity label with the lowest cost. 
 

 
4. HIERARCHICAL APPROACH 

An increasing variety of high resolution image acquisition hard-
ware is available today, both to the general public and profes-
sionals. Hence, algorithms which are capable of handling large 
data are needed. An extension to high resolution images of the 
method reported in the preceding sections is inevitably based on 
scaled representations of the stereo pair. The aim is to limit the 
disparity search space to a computationally feasible range, and 
besides to guide matched disparities in a coarse-to-fine context. 



This method also reveals structures in different layers of image 
pyramids, which lead from a rough but robust 3D surface to fi-
ne detail as one “climbs up” the image pyramid. Typical Gauss-
ian pyramids are employed here, with a 3×3 (σ = 0.5) filter for 
all scales and subsequent down-sampling by a factor of 2. 
 
The disparity map is expanded to the next finer level by propa-

gating disparities via bilinear interpolation and smoothing them 
with a Gaussian filter for removing spikes. The initial disparity 
map can be regarded as a zero-map, and the search space can be 
very roughly bounded between zero and the width of the lowest 
pyramid layer. At this point, the already defined cross windows 
are introduced to restrict the field of values of the disparity fun-
ction per pixel, extended by a number of pixels (here 2 pixels). 

Figure 4. Comparison of different matching cost functions for four Middlebury stereo pairs. Disparity maps are presented from 
individual and the overall matching function after the aggregation step. Top to bottom: left image; proposed modified census trans-
formation; AD on image channels; AD in principal images gradients; combined cost; and reference disparity maps. The refinement 
steps described in section 5 have not been used here, in order to illustrate individual results and the improvement achieved by 
fusing the three costs. 



In particular, it is accepted that neighbouring pixels q, i.e. pixels 
belonging to the support region Sp of p as defined in the cost ag-
gregation step (section 3.1), can adequately define the range via 
their approximate disparity dp

(s−1) computed in the coarser layer: 
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In this way mismatches near edges, where abrupt “jumps” in the 
disparity map occur, are addressed. The search interval is ade-
quately wide to accommodate edge misplacement in the dispari-
ty map of lower resolution layers, while at the same time being 
restricted through the support region. 
 
 

5. POST-PROCESSING 

5.1 Left-right match constraint 

Matching consistency (‘cross-checking’) between reference and 
match images is a common reliable tool for evaluating the qua-
lity of a disparity map (Banks, 2001; Brown et al., 2003). It is 
both easy to implement in local stereo algorithms and efficient 
for validating matched pixels, although it does not distinguish 
among outliers from different origins. Pixel p is characterized 
as valid (inlier) if the following constraint holds for the dispari-
ty maps Dmap of the reference and matching images: 
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5.2 Outlier cross-based filtering  

The cross-based support regions provide a robust description of 
pixel neighbourhoods. For this reason cross-windows can be ex-
ploited to correct localized outliers in a disparity map (Lu et al., 
2008; K. Zhang et al., 2009; Mei et al., 2011). Thus, the valid 
disparities belonging to the support region Sp for an outlying pi-
xel p are retrieved. In this paper, the median value of inliers in 
the support region is selected and attributed to the mismatched 
pixel. The method is iterative since it is a ‘region closing’ tech-
nique for large areas of outliers, such as occlusion areas, which 
are progressively filled with neighbouring disparities. 
 
5.3 Occlusion/mismatch labelling 

Remaining outliers are re-estimated via an image match consi-
stency test. Outliers may stem from different origins. Two main 
cases, however, are of particular importance for developing an 
interpolation strategy, namely occlusions and mismatches. In 
Bobick & Intille (1999) and Brown et al. (2003) interesting ap-
proaches are found; yet, an efficient technique is that suggested 
by Hirschmüller (2008). For rejected pixels characterized as 
mismatches, a new disparity value is given using median inter-
polation in a small patch around them; occluded pixels, on the 
other hand, are given the second lowest disparity value in their 
neighbourhood as their new disparity value. Fig. 5 presents an 
example to illustrate the improvement of matching results after 
this refining treatment of mismatches and occlusions. 
 
5.4 Sub-pixel estimation  

Finally, estimation at the sub-pixel level is made by interpola-
ting a 2nd order curve to the cost volume C(d). This curve is de-
fined by the disparities of the preceding and following pixels of 
the ‘winner-takes-all’ solution and their corresponding cost va-
lues. Optimal sub-pixel disparity value dopt is determined by the 

minimum cost position through a closed form solution for the 3 
curve points (dopt = argmind(C(d)). 
 

Figure 5. Disparity map of the left Tsukuba image before (left) 
and after (right) occlusions and mismatches have been handled.
 

5.5 Disparity map smoothing 
 
A final median filter is applied on the disparity map after sub-
pixel estimation to reject spikes. Moreover, as in the case of the 
Herz-Jesu-K7 stereo-pair (see following section), a bilateral fil-
ter (Tomasi & Manduchi, 1998) is applied on the disparity map 
to improve the quality of the reconstructed point cloud without 
disturbing disparity, i.e. object edges. Fig.6. gives an example 
illustrating the effect of the overall post-processing refinement. 
 

Figure 6. Disparity map of the Teddy reference image before 
(left) and after (right) the overall refinement. 
 
Finally, Fig.7 presents the improvement achieved from each re-
finement step for the 0.75 pixel threshold. The average error for 
all four Middlebury stereo-pairs has been taken into account. 

 

Figure 7. Performance of each refinement procedure regarding 
disparity map accuracy for the 0.75 pixel threshold, seen as a-
verage error for four Middlebury datasets (% of wrong pixels). 
A: initial disparity map, B: cost smoothing, C: outlier cross-
based filtering, D: remaining occlusion/mismatch handling, E: 
sub-pixel estimation, F: median smoothing (nonocc: non-oc-
cluded pixels, disc: discontinuities, all: all pixels). 

 
 

6. RESULTS 

The presented algorithm has been evaluated on the Middlebury 
on-line platform and also tested using EPFL multi-view datasets 
(Strecha et al., 2008). Images acquired with the same camera, or 



under the same conditions, are expected to be handled with the 
same parameter set. Thus, parameter values were kept constant 
for all tests (Table 1), although results from the EPFL dataset 
may improve significantly if parameters are tuned.  
 

Table 1. Parameters values used in all dataset evaluations.  

census 
transformation  

m 11 lambda λc 45 

n 9 lambda λADc 5 

length  threshold Lmax 31 lambda λADg 18 
colour threshold τmax 24   

 

Figure 8. Top: final resulting disparity maps after full match-
ing procedure using the four stereo pairs of Middlebury evalu-
ation platform. Middle: “bad” pixels of the produced disparity 
maps evaluated for the 0.75 pixel error threshold. Mismatched 
pixels in occluded areas are indicated by gray colour, non-oc-
cluded areas in black. Bottom: True disparity maps. 

 
Final results of the complete method, along with erroneous pi-
xels, are seen in Fig. 8. Its performance is indeed encouraging, 
as it is rated among top algorithms using the Middlebury evalu-
ation stereo dataset. When comparing for the >1 pixel error to-
lerance, our approach scores worse than ADCensus (Mei et al., 
2011) which is currently at the 2nd position of this platform ra-
ting and uses a similar aggregation support region based on sup-
port skeletons (Zhang et al., 2009). On the other hand, a major 
improvement is observed when comparing for sub-pixel accura-
cy. The pipeline proposed in this paper results in a high perfor-
mance under the error thresholds of 0.5 and 0.75 pixels in dis-
parity values disposition. In fact, it rates 2nd in the 0.75 pixels 
threshold comparison, while most top performing methods for 
the 1 pixel threshold give bad results for sub-pixel testing, re-
gardless of optimization method (local, global). It is also noted 
that the only method outperforming our algorithm for the 0.75 
pixel threshold compares poorly for the 1 pixel threshold. Ave-
rage % error in our case is 6.15 (Fig. 9). Good sub-pixel accu-
racy is important for several applications since it significantly 
improves the quality of 3D reconstruction and of the triangular 
meshes subsequently produced (lack of sub-pixel accuracy re-
sults in poor 3D meshes because of the discrete values of depth 
information).

Finally, Fig. 10 shows a Herz-Jesu-K7 stereo pair (6 Megapixel 
images: 0006.png, 0007.png) and the created disparity map. An 
indication for the accuracy of reconstruction has been gained by 
registering the generated point cloud onto the ground truth data 
via the ICP algorithm (Fig. 11). Mismatch is represented by an 
average distance of 10 mm and a standard deviation of 19 mm. 
If reduced to mean image scale, these values correspond to ~1.8 
and ~3.4 pixels, which are considered as quite satisfactory. 
 

Figure 9. From top to bottom: epipolar Herz-Jesu-K7 stereo-
pair; disparity map; detail of the 3D representation of the dis-
parity map; textured 3D representation of the disparity map. 

 

Figure 10. Results from the Middlebury evaluation platform for the 0.75 pixel threshold. Columns record from left to right: 
method; average rank; errors for the Tsukuba, Venus, Teddy, Cones stereo pairs; and average percent of bad pixels (errors are 
recorded for cases of non-occluded pixels, all pixels, discontinuities). Date of evaluation: January 30, 2013. 



 
Figure 11. Registration of the reconstructed point cloud onto 
the ground truth data (Herz-Jesu-K7 stereo-pair). 

 
 

7. CONCLUDING REMARKS 
 
The stereo matching algorithm, presented here as part of a 3D 
reconstruction pipeline, is based on a local hierarchical scheme. 
As illustrated in the preceding section, architectural scenes, for 
instance, may be accurately reconstructed using standard com-
mercial cameras without participation of the user. Although glo-
bal optimization methods turn out to be more accurate over the 
years, they face limitations in memory and speed, especially in 
cases of large images. On the other hand, developments on cost 
aggregation support regions exploited in local methods appear 
to produce competitive (if not better) results; such approaches, 
moreover, are usually easier to implement, computationally fea-
sible and sufficiently fast, even for real-time tasks. Inherent li-
mitations (i.e. favouring front parallel surfaces and unconstrain-
ed relations among neighbouring pixels) can be gradually dealt 
with. Of course, the reconstruction of a full 3D model requires 
combination of more views, whereby in this case multiple depth 
values for a voxel in space will be available, thus providing ad-
ditional information for removing erroneous disparities. In this 
sense, future research topics include fusion of more views for 
each scene, but also improvements in the matching algorithm 
itself. In particular, a better adaptive combination of individual 
cost measures in the final cost function through an image seg-
mentation scheme is expected to improve performance, particu-
larly for high resolution imagery. 
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