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ABSTRACT 
 
A variety of methods for camera calibration, relying on different camera models, algorithms and a 
priori object information, have been reported and reviewed in literature. Use of simple 2D patterns 
of the chess-board type represents an interesting approach, for which several ‘calibration toolboxes’ 
are available on the Internet, requiring varying degrees of human interaction. This paper presents an 
automatic multi-image approach exclusively for camera calibration purposes on the assumption that 
the imaged pattern consists of adjacent light and dark squares of equal size. Calibration results, also 
based on image sets from Internet sources, are viewed as satisfactory and comparable to those from 
other approaches. Questions regarding the role of image configuration need further investigation. 
 

1. INTRODUCTION 

Camera calibration constitutes a fundamental task in photogrammetry and computer vision. A signi-
ficant number of methods for camera calibration have been reviewed in literature (Clarke and Fryer, 
1998; Salvi et al., 2002; Villa-Uriol et al., 2004). Approaches differ in various respects: they can in-
volve single images or multi-image configurations; different camera models are adopted; the image 
features may be points but also lines (e.g. Grammatikopoulos et al., 2007); linear and non-linear al-
gorithms are used; targeted 3D or 2D test-fields are usually employed but camera calibration is also 
practicable with no a priori object information. Self-calibration is indeed feasible with simple image 
correspondences among frames, yet the participation of control points produces more robust cali-
bration results, in closer agreement with object space constraints. Further, in practical close-range 
photogrammetric projects camera pre-calibration through appropriate image networks may often be 
preferable (Remondino and Fraser, 2006). 
In this context, methods for estimating camera parameters rely typically on targeted test-fields and 
correspondences between targets and their images on one or more frames. For multi-image configu-
rations, precise 3D test-fields can be replaced by simple 2D patterns, typically of a chess-board type. 
If indeed a camera should, ideally, be automatically calibrated solely from image sets taken rapidly 
with unknown exterior orientation (Fiala and Shu, 2005), a further advantage of such patterns is the 
fact that their high contrast and regularity facilitate automation based on feature extraction tools. 
Several freely available algorithms exist for estimating interior and exterior orientation parameters 
based on chess-board patterns imaged from different points of view. These have been essentially in-
spired by the ‘plane-based calibration’ approach (Sturm and Maybank, 1999; Zhang, 1999) which is 
a process relying on the computation of homographies between a plane with known metric structure 
and its images. These 2D projective transformations yield a system of linear equations in the camera 
parameters, hence the initialisation step results in a closed-form solution for these parameters, in 
which lens distortion is generally not included (Sánchez et al., 2006). This phase is usually followed 
by a non-linear refinement step, based on the minimization of the total reprojection error. 
Among functional tools presented in this context, Bouguet’s Camera Calibration Toolbox for Mat-
lab® (also implemented in C++ and included in the Open Source Computer Vision library distributed 



 

by Intel) is probably best known. The initialisation step includes manual pointing of the four chess-
board corners on all images and knowledge of the number of nodes per row and column. Node loca-
tions can thus be first approximated and then identified with sub-pixel accuracy by a point operator. 
If lens distortion is strong, one may need to supply approximations for its coefficients. Initial values 
are provided by the plane-based calibration algorithm, while an iterative adjustment provides a final 
solution for camera and pose parameters. Other variations with higher degree of automation (see the 
Bouguet website), some of which are ‘add-ons’ to this toolbox, require special target types, patterns 
with odd and even number of corners in the two directions, or assumptions about the magnitude of 
lens distortion and the demand that the full calibration pattern is visible on the images. 
Recently, a camera calibration toolbox has become freely available from the Institute of Robotics & 
Mechatronics, DLR, Germany (see DLR CalDe – DLR CalLab website). The calibration pattern does 
not need to be fully imaged, hence the whole format can be exploited for estimating lens distortion. 
The operation is fully automatic if the chess-board contains three circular targets in its centre, else 
such points must be given manually. After a first solution, a tool is provided to identify and remove 
erroneously detected corners by setting a threshold for residuals. This procedure has not been auto-
mated since such decisions are regarded as depending to a great extent on the particular cameras. 
Our contribution presents an implemented automatic algorithm for the exclusive purpose of camera 
calibration, in the sense that exterior orientation is here irrelevant. This is achieved using image sets 
of typical chess-board patterns (alternating light and dark squares of equal size), which is the sole a 
priori information needed. Only those extracted image points are kept which may be ordered in two 
groups of lines referring to the main orthogonal directions on the object plane. Due to the regularity 
of the pattern, establishing point correspondences among views is then a trivial task, albeit possibly 
involving object systems which differ in in-plane rotation and translations. Yet the fact that homo-
logue image points do not necessarily refer to the same physical point of the pattern affects only the 
exterior orientations. Initial values are found from the image vanishing points, and a final estima-
tion for camera parameters is obtained from bundle adjustment. The process is described in the next 
sections, where calibration results from different cameras are also presented and evaluated. It is to 
note that in the following ‘reasonable’ images are assumed, taken indeed for calibration purposes 
(the pattern occupies a substantial part of the frames, no objects interfere with the pattern etc.). 
 

2. CAMERA CALIBRATION ALGORITHM 

2.1 Initialisation step 

2.1.1   Corner extraction. With parameters chosen after some tests, the Harris corner operator with 
sub-pixel accuracy, made available by Bouguet in his website, is applied to grayscale images with 
equalized histograms. Image standard errors of bundle adjustments have corroborated the assertion 
that the corners are extracted to an accuracy of ~0.1 pixel. Indeed, in all experiments this phase has 
supplied good results, by extracting practically all pattern nodes and rather few redundant points. 
Indications for the satisfactory performance of the sub-pixel Harris operator in case of chess-board 
patterns are also found in Ouyang et al. (2005). 
 
2.1.2   Point ordering. After extraction of feature points on an image, the medians of their x, y co-
ordinates are calculated. These will normally indicate a point close to the centre of the chess-board 
pattern. The median is preferred against the mean value due to its lower sensitivity to the presence 
of ‘noisy points’ outside the chess-board. The point selection and ordering algorithm is initialized 
by choosing the closest feature point as ‘base point’ B. 
All extracted points around B in a window of size equal to ⅓ of the image size are calculated and 
sorted according to distance from it. Assuming that B is indeed a valid node, the principal directions 
of the pattern must now be identified by avoiding points not corresponding to pattern nodes but also 
points on chess-board diagonals. The linear segment s from ‘base point’ B to the nearest extracted 



 

point is formed. Identification of the main directions succeeds by comparing the grey values of the 
pixels on either side of s. Thanks to the chess-board pattern, if this segment s indeed belongs to one 
of the principal directions, a large difference in grey values must occur between the two sides of s. 
The representative grey value on either side is calculated from a sample along a line parallel to s, 
with length equal to ⅓ of the length of s and midpoint distanced half the length of s away from the 
midpoint of s. If the difference between the mean grey values of these samples on either side of s is 
found to exceed by more than 3 times the overall standard deviation of image grey values, then this 
segment s is regarded as belonging to one of the principal directions. 
This is repeated for the next 7 closest points around B. If the other main direction (i.e. perpendicular 
to the first on the chess-board) is also found, these two segment lengths and directions are stored as 
initial reference values, and the algorithm continues to identify the rows and columns of the pattern. 
If it is not possible to establish both directions, then this ‘base point’ B probably does not represent 
a chess-board node, or there are few neighbouring points around it. Thus, the process is resumed by 
selecting as new ‘base point’ B that next closest to the ‘median point’. This procedure is repeated 
until both principal directions have been fixed. 
A similar search evolves for the next points of these two lines. Using the stored segment length and 
angle of the respective main direction, the position of the next point on the line is anticipated. The 
algorithm searches within a small region, defined by thresholds in segment length and angle, around 
this estimated point position to locate extracted feature points. If a point is found, it is considered as 
part of the same line (optionally the grey-value criterion may also be used here, yet for all practical 
tests carried out this has not been necessary). This point becomes now the new ‘base point’ for the 
next search, while values for segment length and direction are updated with the new segment. Next 
segments define new search lengths and directions. It is noted that – contrary to approaches where 
point locations are estimated by means of the four corner points – here the effect of lens distortion 
on the directions defined by neighbouring nodes on a line is regarded as negligible. 
It is not indispensable to identify all individual nodes. In case of a missing node, the position of the 
next one is estimated and an acceptable extracted point is again searched for. When three successive 
‘missing points’ have been encountered, it is assumed that all line points have been located and the 
search is halted. This is repeated for locating all points of the ‘perpendicular’ line. Lines which have 
less than 4 points are regarded as unreliable and a ‘gap’ is considered in their place. 
Next, from the central point of this line using the ‘perpendicular’ direction and the corresponding 
segment length, a point of the next ‘parallel’ line is estimated. If a point is found, the same process 
is continued. Otherwise, starting from points next to this central point, corresponding points on the 
‘parallel’ line are searched for. If it is not possible to locate points on this line, a ‘gap ‘is set in its 
place and the algorithm seeks after a point of the next ‘parallel’ line. When three successive ‘gaps’ 
are met, the algorithm accepts that there are no further detectable lines in this direction. The process 
continues with a similar search for converging image lines (parallel chess-board lines), guided as 
before by local segment length and direction. 
After the detection process for chess-board lines is terminated, these are ordered. The line through 
the original ‘base point’ which forms smaller angle with the image x-axis fixes the group of ‘rows’; 
the other line fixes the ‘columns’. Rows and columns are sorted according to the coordinate of their 
intersection with the respective image axis (y for rows, x for columns). It is stressed that, as a basic 
precaution, only points which belong to both a row and a column are accepted as valid chess-board 
corners. This permits to discard ‘outliers’, i.e. points (particularly outside the pattern) which might 
happen to be nearly collinear with a chess-board line and their distance from some point of the line 
falls within the local tolerance of segment length. In Fig. 1 two examples illustrate the three basic 
steps of point extraction, line formation and final selection of chess-board nodes. 
 
2.1.3   Point correspondences. The final outcome of this step is a set of points characterized by the 
number of the respective chess-board row and column with which they are associated. The lower 
row appearing on an image is row 1 and is arbitrarily associated with the object X-axis. The column 
to the far left is column 1 and associated with the object Y-axis. Thus, the point belonging to these 



 

two lines is point (1,1) of this image and is associated with the origin (point 1,1) of the chess-board 
XY system. If this point does not actually appear on an image or has not been detected, the adjacent 
node detected on this image is numbered accordingly, e.g. (2,1) or (1,2) etc. The process is repeated 
for all images. Hence, thanks to the symmetric nature of the pattern, it may be assumed that point 
correspondences among frames as well as correspondences with the chess-board nodes have been 
established. This provides an answer to the problem of correspondences, which is seen as the most 
difficult part in automatic camera calibration and is often solved manually (Fiala and Shu, 2005). 
 

Figure 1. Initially extracted points (left), formed lines (centre), final nodes (right). 
 
Clearly, the exterior orientation (pose) of images is here irrelevant. Images refer to their own object 
systems which may differ by in-plane translation and rotation. Consequently, point correspondences 
among views established above will not necessarily refer to identical physical points of the pattern. 
But this can be tolerated thanks to the symmetry of the chess-board. Generally speaking, for camera 
calibration with 2D object control it is the perspective distortions of images which primarily matter, 
i.e. their relation to the symmetric planar object and not to a fully fixed system in object space. 
Yet, it must be noted that this process (e.g. images taken from different sides of the pattern may be 
treated as taken from the same side) has its effect on the ray intersection angles in self-calibration. 
If no ground control is used, this will be reflected in the precision of interior orientation parameters. 
However, since our approach presupposes equal pattern squares, object coordinates (in an arbitrary 
scale) can be introduced in bundle adjustment. If these are treated as error-free or highly weighted, 
the arbitrary choice of object systems is not expected to affect significantly the precision of camera 
calibration. On the other hand, orthogonal roll angles loosen correlations between interior and exte-
rior orientation parameters (Remondino and Fraser, 2006). Our approach is inherently incapable of 
recognizing such rotations – a price paid when using plain chess-board patterns without special 
targets for the orientation of the object system. Interchange of X and Y object axes in some images 
might be a possible answer to this. In a first test this has weakened significantly the largest correla-
tions (those of yo with rotations ω and κ) at the expense of an increase of the smaller correlations (of 
yo with φ and of xo with ω and κ). This, too, is a point for further investigation. 
 
2.1.4   Initial values. Instead of the linear solution of plane-based calibration, the approach adopted 
here relies on the two principal vanishing points (VP) of the images. These are found by line-fitting 
adjustment to nodes ordered in pencils of converging lines. In each direction, initial estimates of VP 
locations are obtained from the two lines with >3 points forming the largest angle. If the distance of 



 

a VP from the image centre exceeds by more than 40 times the size of the image format (equivalent 
to a rotation angle ~1.5° for a moderately wide-angle lens), this VP is considered at infinity. If both 
VPs are finite, their locations are refined in a single adjustment, in which coefficients of radial lens 
distortion are also included in the unknowns. Using diagonals with >3 points, the VP of the diagonal 
direction which falls between the two principal VPs is also included as an unknown to enforce the 
vanishing line constraint. In case one VP is finite, it is estimated from all participating lines along 
with the radial distortion coefficients. 
Assuming the principal point at the image centre, camera constant c and image rotation matrix can 
be found from the two principal VPs of each participating image according to Karras et al. (1993). 
The estimations of c and the distortion coefficients with the smallest standard errors (σc is estimated 
through error propagation) will be used as initial values in the bundle adjustment. If one of the VPs 
is assumed at infinity, the corresponding out-of-plane rotation (ω or φ) is set to zero, the other is 
found using the above-mentioned initial value for c; estimation of image roll κ is trivial. Finally, the 
largest dimension in X seen in all images (arbitrarily scaled) is used for approximating the camera 
altitudes. The planimetric position of the projection centre in the object system of each image may 
then be estimated from the image coordinates of the origin (point 1,1). If this latter point has not 
been detected on an image, its location is approximated by the intersection of row 1 with column 1. 
 

2.2 Bundle adjustment 

Finally, an iterative bundle adjustment is carried out for a final estimation of camera geometry para-
meters. Since the algorithm also functions in a pure self-calibration mode (no object control) some 
results are given for comparison in the following section. Yet the main results presented are based 
on control points with uncertainty set here to 0.1‰ of the chess-board dimension. Besides camera 
constant c and principal point location (xo, yo) the adopted camera model also includes image aspect 
ratio and the four coefficients k1, k2 for radial symmetric lens distortion and p1, p2 for decentering 
distortion (Brown, 1966). Image pixels are treated as rectangular. However, as also seen in our ex-
periments, decentering distortion in current digital cameras is mostly negligibly small compared to 
sensor quantization, and hence a possible source of instability (Zhang, 1999); image aspect ratio is 
also mostly insignificant (Remondino and Fraser, 2006). In the next section, results for aspect ratio 
are only given for the purposes of comparison with results from other algorithms. 
 

3. PRACTICAL EVALUATION 

Tests with two cameras were performed using different image sets for each camera. 
• Camera 1. Three sets of 640×480 images, presented in Fig. 2, were used for the first camera. Set 1 
(with 9 images) is ‘weak’, since in most images the pattern covers a relatively small image area. Set 
2 includes only 4 images, which however have a better scale. The third set has 9 images similar to 
those of set 2 and represents a much stronger geometry. Results are seen in Table 1, in which σo 
stands for the standard error of the adjustment. 
 

 

Figure 2. Image sets for Camera 1 (above: set 1, middle: set 2, below: set 3). 



 

Table 1. Calibration results for Camera 1 (italics: without use of control points) 
Sets σo (pix) c (pix) xo (pix) yo (pix) k1×10−7 (pix−2) k2×10−13 (pix−4)

1 0.16 675.22 ± 0.42  −4.79 ± 0.29    0.70 ± 0.35 -4.003 ± 0.077    9.644 ± 0.896
2 0.15 671.28 ± 0.56  −3.63 ± 0.27 −0.44 ± 0.37  -4.107 ± 0.058  10.508 ± 0.461
3 0.14 670.55 ± 0.26 −4.41 ± 0.17    0.47 ± 0.20 -4.087 ± 0.049    9.798 ± 0.473
3 0.10 670.10 ± 0.23 −6.63 ± 0.43   0.56 ± 0.45 -4.190 ± 0.049 10.201 ± 0.401

 
The principal point locations are very close to each other in all three sets, while the radial distortion 
curves are practically the same (differences are well below 1 pixel at image corners). However, the 
camera constant estimated by set 1, in which image coverage is small, shows a difference of about 
0.7%, while the radial distortion has the smallest precision. Despite its few images, set 2 produces 
results close to those of set 3, albeit with higher standard errors. The standard errors provided by the 
much stronger geometry of the last set are satisfactory. It is noted that even the results from self-
calibration without the use of control points (in italics in Table 1) are also close to those when using 
control, but with a clearly smaller precision in the location of the principal point. 
 
• Camera 2. Two sets of 648×486 images, which are shown in Fig. 3, have been used for the second 
camera. Both sets include 7 images and are regarded as representing satisfactory configurations as 
regards image coverage, image scale and scale variations, as well as differences in perspective dis-
tortions. Results are given in Table 2. 
 

Figure 3. Image sets for Camera 2 (above: set 1, below: set 2). 
 

Table 2. Calibration results for Camera 2 (italics: without use of control points) 
Sets σo (pix) c (pix) xo (pix) yo (pix) k1×10−7 (pix−2) k2×10−12 (pix−4)

1 0.14 643.66 ± 0.22 3.71 ± 0.15 3.99 ± 0.13   −5.149 ± 0.051  1.553 ± 0.060  
2 0.13 642.61 ± 0.24  2.44 ± 0.16   2.73 ± 0.14   −5.277 ± 0.058  1.694 ± 0.077 
1 0.05 643.96 ± 0.10 2.57 ± 0.47 1.18 ± 0.40 −4.964 ± 0.030 1.350 ± 0.030 
2 0.05 643.92 ± 0.11 2.88 ± 0.48 2.77 ± 0.44 −5.022 ± 0.032 1.391 ± 0.037 

 
The repeatability of calibration for these image sets is high, even without the involvement of control 
points. Besides, values for all parameters of this camera from previous bundle adjustments with 3D 
control fall within the range of Table 2. The fact that the standard error σo trebles when control is 
introduced may be attributed to deviations of the pattern from planarity due to its large size. 
 
• Image set of Bouguet. Our algorithm has also been applied to the 20 images of the set given by J.-
Y. Bouguet in his web site (one of them is seen in the first row of Fig. 1). The results are presented 
in Table 3. Included are also those given by Bouguet, in which σo stands for the ‘reprojection error’, 
while distortion coefficients have been reduced by corresponding powers of the camera constant to 
become comparable with our results. Values for the coefficients of decentering distortion are not in-
cluded since they are insignificant compared to their standard errors (especially p1). It is seen that 
the results are fully compatible (in fact even when no ground control is used), with distortion curves 
being practically coincident. 



 

Table 3. Calibration results for the Bouguet image set (italics: without use of control points) 
Results σo (pix) cx (pix) cy (pix) xo (pix) yo (pix) k1×10−7 (pix−2) k2×10−13 (pix−4)
Bouguet 0.12 657.46 

 ± 0.32 
657.95 
 ± 0.34 

−16.86 
 ± 0.65 

 −2.57 
± 0.59 

 −5.872 
± 0.057 

  6.489 
± 0.527 

 0.10 657.78 
 ± 0.11    

658.17 
 ± 0.12 

−16.68 
± 0.10    

 −4.21 
± 0.11    

 −5.972 
± 0.020       

   7.282 
± 0.183 

 0.09 658.15 
 ± 0.17 

658.74 
 ± 0.11 

−18.45 
 ± 0.50 

 −4.07 
± 0.49 

 −6.036 
± 0.020 

  7.458 
± 0.168 

 
• Image sets of DLR. Further, the algorithm has also been used with two sets of ten 780×580 images 
(one of them seen in the lower row of Fig. 1) of the DLR CalDe – DLR CalLab website. These have 
been acquired with a stereo-camera treated here as two independent cameras (I and II). It is noted 
that these lenses have stronger radial distortion, and also that the pattern is only partly recorded in 
some images. Results are presented in Table 4, where also results from the DLR software in single-
image mode are included (here again σo stands for the ‘reprojection error’, while distortion coeffi-
cients have been accordingly reduced). This software does not supply standard errors of parameters. 
 

Table 4. Calibration results for the DLR image set (italics: without use of control points) 
Results σo (pix) cx (pix) cy (pix) xo (pix) yo (pix) k1×10−7 (pix−2) k2×10−13 (pix−4)

  (I) DLR  0.18 727.51 726.54 −16.13 −1.28  −3.824   3.524 
  (I) 0.16 726.12 

± 0.17 
725.45 
± 0.17     

−16.20 
± 0.13    

−6.89 
± 0.13 

 −3.889 
± 0.018      

  4.017 
± 0.087 

  (I) 0.13 727.05 
± 0.23 

726.63 
 ± 0.26 

−15.48 
 ± 0.47 

  0.24 
± 0.55 

 −3.911 
± 0.023 

  4.008 
± 0.096 

  (II) DLR 0.15 731.79 730.60 −20.01 −4.50 −3.990   4.335 
  (II) 0.14 731.44    

± 0.15     
730.37 
 ± 0.15    

−20.51 
 ± 0.11 

−5.66 
± 0.11 

 −3.969 
± 0.017       

  4.357 
± 0.085   

  (II) 0.12 731.24 
± 0.19 

731.28 
± 0.24 

−18.83 
 ± 0.42 

−2.34 
± 0.51 

 −3.948 
± 0.020 

  4.453 
± 0.090 

 
Our results are not directly comparable to those from the DLR software since when using it we had 
to discard 60 to 70 erroneous image points near the edges to obtain a reasonable reprojection error. 
However, with the exception of yo in the first camera the calibration results stand in rather good 
agreement, with coincident distortion curves. When no control is used, a deviation of a few pixels 
occurs in the principal point location (mainly in yo). 
 
• Image set of Zhang. Last, the algorithm was used with the 5 images (640×480) from the website 
of Zhang. In this case the corners of the patterns are not equally spaced, i.e. they are unsuitable for 
our algorithm. Yet their distances fall within the threshold used in our approach and, since the full 
pattern is recorded, it was possible to establish correspondences automatically. Control point co-
ordinates were given. Table 5 includes the results of Zhang (1999) with the omission of skewness. 
 

Table 5. Calibration results for the Zhang image set (italics: without use of control points) 
Results σo (pix) cx (pix) cy (pix) xo (pix) yo (pix) k1×10−7 (pix−2) k2×10−13 (pix−4)
Zhang 0.33 832.50 

 ± 1.41 
832.53 
± 1.38 

−16.04 
± 0.71 

 33.41 
± 0.66 

−3.290 
± 0.043 

  3.955 
± 0.520 

 0.23 832.76 
± 1.42 

833.09 
± 1.40 

−16.45 
± 0.47    

35.29 
± 0.41    

 −3.326 
± 0.072        

  4.064 
± 0.625 

 0.15 832.39 
± 1.19 

831.98 
± 1.38 

−9.76 
± 6.60 

 41.39 
± 5.51 

 −3.360 
± 0.130 

  4.787 
± 0.802 



 

The results are indeed compatible in all parameters, though with large standard errors attributed to 
the weak configuration of these five images from a normal-angle lens. Due to this, the solution from 
pure self-calibration (no ground control) is obviously quite unreliable. 
 

4. CONCLUDING REMARKS 

An approach has been presented for the automatic multi-image calibration of cameras from images 
of 2D chess-board patterns, under the single assumption that these consist of adjacent equally sized 
squares. Calibration results, including those using image sets from different Internet sources, are re-
garded as satisfactory and comparable to results from other approaches for camera calibration with 
planar objects. Of course, this presupposes that ‘reasonable’ image sets (in quality, pattern coverage 
and number) are used, with significant differences in perspective to constitute strong configurations. 
In such instances it appears that even the total absence of control points may produce usable results. 
Exterior orientation is here irrelevant due to the symmetry of the pattern, which interferes with the 
strength of ray intersections in bundle adjustment. Further, images with orthogonal roll angles can-
not be treated as such. This raises certain questions regarding the precision of results, particularly as 
regards principal point location, whose variability is generally regarded as high compared to other 
camera parameters (Ruiz et al., 2002). With camera calibration from 2D patterns being indeed an 
attractive and simple approach yet with high potential, such aspects need to be further investigated. 
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