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ABSTRACT 
 
Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using 
images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration im-
plies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional 
specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary 
chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract 
nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node cor-
respondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of 
the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre 
of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches 
for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mis-
matching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs 
on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to 
the pattern are irrelevant. Results from this automatic method show typical precisions not above ¼ pixels for 640x480 web cameras. 
 
 

1. INTRODUCTION 
 
Estimation of the camera geometry parameters represents a fun-
damental task in photogrammetry and computer vision. Camera 
calibration approaches (reviewed in Clarke & Fryer, 1998, Salvi 
et al., 2002, Villa-Uriol et al., 2004) differ widely e.g. regarding 
number of images involved, used camera models and algorithms 
or type of observed features. Although camera calibration is, in-
deed, possible without a priori object information (simple point 
matches on >2 frames from the same camera allow self-calibra-
tion), the use of reliable external control ensures calibration data 
which also satisfy such object space constraints. Since, further-
more, in close-range applications it is often preferable to pre-ca-
librate cameras via suitable image networks (Remondino & Fra-
ser, 2006), most approaches are based on targeted test-fields and 
target-image correspondences. However 3D test-fields may well 
be replaced by simpler 2D patterns, typically of the chess-board 
type, imaged on multiple views. If, to quote Fiala & Shu (2005), 
cameras should, ideally, be automatically calibrated via rapidly 
taken images, coded 2D patterns are particularly suitable for the 
purposes of automation. Thus one finds freely available tools re-
lying on chess-board patterns, recorded in different perspective 
views, for determining interior and exterior camera orientation. 
 
Such tools have been inspired by the “plane-based calibration” 
approach (Sturm & Maybank, 1999; Zhang, 1999), which relies 
on the homographies between a plane of known metric structure 
and its images. The linear system in the basic camera elements 
provided by these transformations results in a closed-form solu-
tion, usually followed by a non-linear refinement step. The best 
known among such tools is the Camera Calibration Toolbox for 
Matlab® of J.-Y. Bouguet (implemented also in C++ and includ-
ed in the Open Source Computer Vision library distributed by 
Intel). This algorithm, initialized by manual pointing of the four 
chess-board corners on all images and a priori knowledge of the 
number of nodes per row and column, identifies the nodes on all 
images with sub-pixel accuracy (for strong lens distortion input 

of approximations may also be required). With initial values for 
the unknown parameters given by the closed-form plane-based 
calibration algorithm, an iterative bundle adjustment refines the 
solution for camera and pose elements. Similar approaches may 
be found on the cited Bouguet website. Particular reference is to 
be made to the DLR CalDe–DLR CalLab® calibration toolbox 
(see cited website), whose stereo-camera calibration procedure 
runs fully automatically if the chess-board includes three special 
circular targets at its centre, else such points must be introduced 
manually. Recent publications on automatic camera calibration 
using chess-board patterns include de la Escalera & Armingol 
(2010), Kassir & Peynot (2010), Narayanan & Bijlani (2011). 
 
In this context, we have presented a fully automatic toolbox for 
camera calibration (Douskos et al., 2009), which is freely avail-
able on the Internet (FAUCCAL, 2009). It relies on images of 
standard chess-board patterns, under the single assumption that 
the light and dark squares are of equal size. Among extracted in-
terest points only those are kept which may be ordered in two 
groups of lines referring to the main orthogonal directions of the 
planar pattern. To establish point matches among views pattern 
regularity is exploited: the lowest line in each image is assumed 
as the X-axis; the pattern line on the far left serves as the pattern 
Y-axis. The fact that, obviously, homologous image points thus 
determined do not necessarily refer to the same physical pattern 
node introduces ambiguity in rotation, translation and scale; but 
this affects only image exterior orientations, which are totally ir-
relevant in this case. Using approximations of parameter values 
drawn from the information embedded in the image vanishing 
points, the final bundle adjustment allows estimating the camera 
geometry parameters in a fully automatic manner. It has been 
shown that the method gives accurate camera calibration results. 
 
Stereo-cameras, namely a camera pair in fixed relative position, 
are now often used, mainly for 3D reconstruction purposes. Yet, 
since no reference system in object space is available, it is clear 
that the above-mentioned approach is unsuitable for calibrating 



stereo-cameras. Calibration of such two-camera systems means 
not only calibrating of both cameras but also determining the 6 
parameters of their true-to-scale relative orientation. To find the 
latter in an automatic mode, approaches reported in literature re-
quire additional coding or targets on the chess-board pattern to 
fix the object space coordinate system. This, for instance, is the 
case of the DLR CalDe–DLR CalLab® toolbox already referred 
to, but also of the 3D scanner reported in Prokos et al. (2010, 
2011), where the colour of one chess-board square is changed to 
allow automatic calibration of the stereo-camera system used. 
 
We present here an automatic calibration toolbox for stereo-ca-
meras based on ordinary chess-board patterns, i.e. with no extra 
coding or targets. First the calibration algorithm is applied sepa-
rately for each camera to images of a simple chess-board pattern 
taken with the stereo-camera. Pattern nodes are extracted, then 
ordered in rows/columns and finally used for finding the two in-
dependent camera parameter sets. Unknown remain, of course, 
the actual node correspondences on the stereo pairs, which are 
indispensable for relative orientation. The missing piece of in-
formation is contributed by an image pair of some “reasonably” 
textured 3D scene which is also acquired with the stereo-camera. 
Image matches are then established automatically using the SIFT 
operator, which allows determination of the fundamental matrix 
of the stereo-camera. This knowledge of 2D epipolar geometry 
enables the algorithm to establish correct node correspondences 
for all stereo-pairs of the chess-board pattern, which finally are 
introduced into an adjustment for full stereo-camera calibration. 
 
 

2. SINGLE CAMERA CALIBRATION  
 
Since the main features of the camera calibration toolbox have 
been reported in detail in Douskos et al. (2009) and documented 
in FAUCCAL (2009), a brief outline will suffice here. 
 
2.1 Initialization 
 
• Corner extraction. The Harris corner operator with sub-pixel 
precision (made available in the website of Bouguet) is applied 
to grayscale images with equalized histograms. Standard errors 
of bundle adjustments support the claim that a precision of ~0.1 
pixel is generally feasible. 
 
• Node selection and ordering. On each image, the feature point 
closest to the median coordinates of all extracted feature points 
is chosen as starting point. Criterion as to whether this point and 
its closest neighbour represent valid nodes is the difference in 
gray value between either sides of the linear segment defined by 
these points, which should be large (this also avoids pattern dia-
gonals). Founded on this simple idea, the algorithm extracts the 
two main pattern directions, and then extends its search until all 
possible pattern lines have been identified. It is noted that the al-
gorithm may also accommodate “gaps”, namely missing nodes 
or even rows and columns. Next, pattern lines are ordered. The 
line through the original starting point forming the smaller angle 
with the image x-axis establishes the rows; the line in the other 
direction fixes the columns. Rows and columns are then sorted. 
Certain precautions are taken to eliminate possible blunders and 
ensure convergence of bundle adjustment. Initially, for instance, 
only extracted points which belong to both a row and a column 
are accepted as valid chess-board nodes in the calibration ad-
justment; however, all other valid pattern nodes thus discarded 
are “regained” by the algorithm in a next step. 
 
• Point correspondences. Final outcome of preceding steps is a 
set of points coded according to the respective chess-board rows 

and columns with which they have been associated. As already 
mentioned, the lower row appearing on each image is arbitrarily 
considered as the object X-axis; the column to the far left is as-
sociated with the object Y-axis. Hence, thanks to the symmetric 
nature of the pattern, it is assumed that point correspondences 
among frames, as well as their correspondences with the chess-
board nodes, have been fully fixed. This answers the problem of 
point matching for the purpose of camera calibration. Point cor-
respondences among views as established here will not necessa-
rily refer to identical physical nodes as all images refer to their 
own object systems, which may differ by in-plane shifts and ro-
tations. In fact, in a camera calibration process with 2D control 
(note that the pattern spacing is also given an arbitrary size) it is 
the perspective image distortions which really matter, i.e. their 
relation to the planar object and not to a system fully fixed in 
object space. 
 
• Initial parameter values. Estimation of approximate values for 
the unknowns is based here on the vanishing points of the two 
principal chess-board directions which are found by line-fitting 
to points already classified in pencils of converging image lines 
(this also allows estimating the coefficients of the lens distortion 
polynomial). Vanishing points near infinity are also accommo-
dated. Details on estimation of initial values for interior and ex-
terior orientation are given in Douskos et al. (2008). An alterna-
tive approach for finding initial values also implemented here 
estimates camera constant via the vanishing points and adopts a 
von Gruber parameterization (Bender, 1971) for estimating the 
remaining 8 interior and exterior orientation parameters from 
the homographies between images and the chess-board plane. 
 
2.2 Camera calibration adjustment 
 
• Mathematical model. With established image-to-pattern point 
matches and initial parameter values, an iterative bundle adjust-
ment using the collinearity equations is next performed to esti-
mate camera geometry. A typical camera matrix is used: besides 
camera constant c and principal point location (xo, yo) it incor-
porates image aspect ratio (equivalently camera constants cx, cy) 
and image skewness. Together with coefficients k1, k2 for radial 
symmetric lens distortion, decentering distortion coefficients p1, 
p2 may also participate, although in current digital cameras their 
effect appears as negligible compared to sensor resolution, thus 
representing a source of instability (Zhang, 1999). 
 
• Refinement through back-projection. In the initial adjustment 
only points identified on both a row and a column of the pattern 
are involved (to ‘double-check’ the validity of identified nodes). 
Discarded valid nodes are chiefly situated on the outer rows and 
columns; thus image bundles are “narrowed”. A remedy is to re-
cover such valid nodes by back-projecting XY pattern node co-
ordinates onto the images using the information gained from the 
initial bundle adjustment. Points identified on at least one image 
are projected on all other images to detect missing nodes via a 
search within a window around the projected point; it is checked 
whether these points also belong to a column or row. Significant 
portions of columns and rows may be “regained” in this fashion. 
Further, three additional rows and columns on either side of the 
identified chess-board edges are back-projected onto all images. 
This is intended to “widen” the bundles of rays by identifying 
acceptable outer rows or columns of the pattern which may have 
been missed. Concluding, a final bundle adjustment for camera 
calibration is carried out using all identified points. 
 
The above method is applied also in the case of stereo-cameras 
in order to calibrate the two cameras independently, since this 
information will be used in the following. 



3. STEREO-CAMERA CALIBRATION 
 
3.1 Mathematical model 
 
The described algorithm extracts the chess-board nodes, orders 
them and determines all camera geometry parameters. But since 
here, next to the calibration data of the two cameras, the true-to-
scale relative orientation of stereo-camera is also required, input 
to the modified algorithm must be synchronized image pairs of 
a chess-board pattern of known grid spacing. Of course the con-
ventional collinearity equation used for the first camera 
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with λ: scale factors, c: camera constants, (xo,yo): image coordi-
nates of principal points, R: image rotation matrices, (Xo,Yo,Zo): 
space coordinates of the projection centers. The camera model 
is the same as before. The calibration adjustment yields the inte-
rior orientation parameters of both cameras along with the 6 pa-
rameters defining the relative rotation matrix R12(ω,ϕ,κ) of the 
two cameras and the base components (Bx,By,Bz) of the stereo-
camera. But this procedure pre-supposes that nodes among the 
images of stereo-pairs have already been correctly matched. 
 
3.2 Establishment of correct node matches 
 
The missing piece of information is obtained here with the help 
of one or more image pairs of a (sufficiently textured) 3D scene 
recorded with the stereo-camera. The SIFT operator is applied to 
such image pairs in order to extract points whose descriptors al-
low establishing image point homologies (Lowe, 2004). Relying 
on such point correspondences, one may recover the 2D epipolar 
geometry of the stereo-camera as represented by its fundamental 
matrix F. Point homologies are thus refined with the help of the 
RANSAC algorithm (Fischler & Bolles, 1981; Hartley & Zisser-
man, 2000) to satisfy the epipolar geometry of the stereo-pair, 
i.e. only the inlying correspondences of the fundamental matrix 
of the image pair are accepted (the precision of this process is 
strengthened thanks to the correction of lens distortions known 
from the previous camera calibration step). 
 
The algorithm then uses this information on epipolar geometry 
(represented by the fundamental matrix) to correctly match on 
the stereo-pairs nodes of the chess-board pattern which are to be 
used for calibration. A node is initially selected near the centre 
of the left image. Its match on the right image is assumed at the 
node closest to its corresponding epipolar line (see Fig. 1). As a 
consequence, matches for all pattern nodes of image pairs are 
produced automatically since nodes have already been ordered 
(no room is left for an ambiguity of ±90° in roll angle κ because 
of the fixed configuration of the a stereo-camera). Of course, all 
paired nodes should also satisfy the epipolar constraint. There-
fore, if the RMS distance of all nodes from their corresponding 
epipolar lines exceeds a threshold, the algorithm proceeds to se-
lecting the node second closest to the homologue epipolar line, 
and so on. Actually, the algorithm performs this for 15 nodes 
and chooses that with the smaller RMS distance from epipolar 

lines, provided that this value is not above a threshold (an empi-
rical value of 5 pixels has been set here to allow for the uncer-
tainty in the estimation of F); if this is not the case, the particu-
lar stereo-pair will not take part in the solution. Other measures 
need also to be taken for avoiding instances of mismatching. A 
danger of false matching arises, for example, if recorded pattern 
lines run nearly parallel to epipolar lines. Hence, it is generally 
important to acquire stereo-pairs whose base will not be parallel 
to the plane of the pattern. Such precautions have proved to be 
sufficient in all tests performed so far. Of course, further elabo-
ration is possible for checking the relative position of pattern 
and epipolar lines. 
 

Figure 1. Node on the left image, corresponding epipolar line on 
the right image and the six nodes closest to the line. The green 
point is among them the closest and defines the correct match.  
 
After this procedure has been successfully carried out for a suf-
ficient number of stereo pairs of the chess-board, a final bundle 
adjustment is performed under the constraint that all stereo-pairs 
share an identical true-to-scale relative orientation. Initial values 
for the exterior orientations of the two cameras are obtained as 
in the case of single camera calibration, from which values for 
the 6 relative orientation parameters may be approximated. The 
main output of the adjustment is the interior orientations of the 
two cameras and their (correctly scaled) relative orientation. As 
long as the ambiguity in scale has been removed, the remaining 
ambiguity of the in-plane translation and rotation with respect to 
the pattern at each position of the stereo-camera is unimportant. 
The results of the automatic approach described above are con-
sidered as satisfactory, with typical a posteriori standard errors 
generally not exceeding ¼ pixel when employing low resolution 
web cameras.  
 
 

4. EXAMPLE OF APPLICATION 
 
A total of 8 stereo-pairs of a chess-board pattern were recorded 
using a pair of a 640x480 web cameras fixed with convergent 
optical axes. Pattern nodes were ordered and the parameters of 
interior orientation were determined independently for the two 
web cameras by means of the single camera calibration toolbox 
FAUCCAL. The results are seen in Table 1. 
 

Table 1. 
Independent calibration of the two cameras 

(8 images per camera) 
 left camera right camera 
 σο = 0.16 pixel σο = 0.15 pixel 
cx (pixel) 954.69 ± 0.40 947.96 ± 0.36 
cy (pixel) 953.47 ± 0.43 945.51 ± 0.39 
xo (pixel) −49.83 ± 0.79 −29.30 ± 0.88 
yo (pixel) 1.95 ± 0.62 −12.24 ± 0.71 
k1(×10−07) −1.26 ± 0.04 −1.29 ± 0.05 
k2(×10−13) −3.69 ± 0.26 −2.89 ± 0.40 
p1(×10−06) −2.04 ± 0.33 1.92 ± 0.36 
p2(×10−06) 2.14 ± 0.26 −1.11 ± 0.31 



A textured 3D scene was also captured with the stereo-camera. 
As described in the previous section, points were extracted and 
matched using the SIFT operator. These point correspondences 
were then filtered with the RANSAC algorithm, which was used 
in the computation of the fundamental matrix. In Fig. 2 the final 
valid point matches are presented. 
 

Figure 2. The stereo-pair of the auxiliary 3D scene and all SIFT 
point matches involved in the computation of the fundamental 
matrix using the RANSAC algorithm. 
 
By exploiting the epipolar constraint as outlined above, all pos-
sible node correspondences were then established between the 
frames of all stereo-pairs (the image pair seen in Fig. 1 is one of 
the stereo-pairs used). In most, but not all, cases the first node 
closest to the corresponding epipolar line proved to provide the 
correct match. RMS distances of nodes from homologue epipo-
lar lines for the 8 stereo-pairs were in the range 1.7–3.4 pixels. 
Fig. 3 shows four examples of matched nodes in stereo-pairs. 
 

Figure 3. Node matches in four stereo-pairs of the chess-board 
pattern which were established thanks to the epipolar constraint 
and then involved in the stereo-camera calibration adjustment.  
 
Based on these node correspondences, the final bundle adjust-
ment resulted in the parameter values presented in Table 2. 

Table 2. 
Calibration of the stereo-camera system 

(8 image pairs) 
σο = 0.21pixel 

 left camera right camera 
cx (pix) 956.61 ± 0.33 951.60 ± 0.31 
cy (pix) 954.94 ± 0.35 950.71 ± 0.32 
xo (pix) −45.76 ± 0.99 −35.01 ± 1.11 
yo (pix) 2.50 ± 0.73 −7.94 ± 0.90 
k1(×10−07) −1.42 ± 0.05 −1.39 ± 0.06 
k2(×10−13) −1.95 ± 0.31 −1.02 ± 0.41 
p1(×10−06) −1.24 ± 0.40 1.02 ± 0.47 
p2(×10−06) 1.46 ± 0.30 −1.35 ± 0.37 

stereo-camera relative orientation 
Bx (cm) 28.07 ± 0.01 
By (cm) 2.23 ± 0.01 
Bz (cm) −8.52 ± 0.03 
ω (°) −3.36 ± 0.04 
φ (°) 33.59 ± 0.07 
κ (°) 2.09 ± 0.02 

 
The standard errors of the adjustment and the parameter values 
appear to be satisfactory. Compared to results from independent 
solutions shown in Table 1, the standard error σο of the adjust-
ment is here slightly higher; differences also appear in camera 
parameter values. Such differences are basically attributed to 
the additional constraint imposed by relative orientation, which 
allows a one-step adjustment and thus introduces additional cor-
relations of camera parameter values. Highest are differences in 
the location of the camera principal point; according to Ruiz et 
al. (2002), however, the variability of its estimations is general-
ly considered as higher compared to other camera elements, in 
particular if small to moderate fields of view are involved (here 
the field of view of the cameras used is 45°). 
 
But it is not always trivial to evaluate the precision of a camera 
calibration procedure (Ruiz et al., 2002, refer to the controversy 
as regards the precision of the camera parameters required for 
obtaining acceptable reconstructions). A more straightforward 
criterion for the quality of stereo-camera calibration would be 
its effect on a 3D reconstruction. The calibrated stereo-camera 
system was, thus, combined with a hand-held laser plane in the 
3D slit-scanner approach as presented in detail in Prokos et al. 
(2010). Homologue points are found on corresponding epipolar 
lines as intensity peaks of the laser trace on the surface, and are 
then used for its automatic reconstruction. A cylindrical plumb-
ing tube of nominal diameter 125 mm was scanned from one 
position. A stereo-pair used for reconstruction is seen in Fig. 4. 
 

Figure 4. Stereo-pair used in the reconstruction of the cylinder. 
 
The collected surface points covered ~35% of its perimeter. The 
cylinder interpolated to the 9104 XYZ values of the point cloud 
showed a standard error of 0.22 mm. The diameter was approxi-
mated as 124.92 ± 0.02 mm. These values are practically coin-



cident with those in Prokos et al. (2010), where stereo-camera 
calibration had been based on special coding of the chess-board 
pattern and surface-fitting to 3670 XYZ points had resulted in a 
standard error of 0.20 mm. 
 
 

5. CONCLUSION 
 
Camera calibration, which is an indispensable intermediate step 
in several photogrammetric and computer vision tasks, may be 
conveniently performed in a fully automatic mode using simple 
coded 2D patterns, usually of the ordinary chess-board type. If, 
however, information regarding the position and orientation of 
cameras in 3D space is needed, the common answer is additional 
coding or targets fixed on the pattern. In this contribution it was 
demonstrated that it is indeed also possible to calibrate automa-
tically a stereo-camera system (i.e. estimate the two parameter 
sets of the cameras and 6 parameters defining their true-to-scale 
relative orientation) using ordinary chess-board patterns. This is 
based on exploiting the fixed epipolar geometry of the system to 
establish correct correspondences between pattern points on the 
images of the pair. This geometric relation, expressed through 
the fundamental matrix, is found by using a stereo-pair of some 
3D scene taken with the camera system. Thus, the required input 
includes: a chess-board pattern of equal and accurately known 
spacing; a number of image pairs of this pattern under varying 
perspectives; a stereo-pair of a textured 3D scene. The actual ex-
terior orientations of cameras will still remain unknown after 
calibration; but scale is recovered, which allows full calibration 
of the stereo-camera system. Results from a practical test have 
indicated that this approach can produce precise results. As has 
been mentioned, a possible future elaboration will be to check 
angles formed between pattern lines and epipolar lines, in order 
to further minimize the possibility of ambiguous node matching. 
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